Calculus 1 - Outline for the Final Exam

Anything that is crossed out will NOT be on the final exam!

Main ideas

Old

A. Limits (one-sided, two-sided, and at infinity) and continuity
B. The derivative of a function and tangent lines
C. Derivative rules including product, quotient and chain rules
D. Derivative formulas for power, trigonometric, inverse trig., exponential, and logarithmic functions
E. Implicit differentiation
F. Interpreting the first and second derivatives: increasing/decreasing, local extrema, concavity, inflection points
G. Using derivatives to find absolute extrema
H. Applications of differentiation to related rates and optimization
I. L'Hôpital's rule

New
J. Definition of the definite integral and the (net) area under a curve
K. Fundamental Theorem of Calculus and net change of a function
L. Indefinite integrals and antiderivatives
M. Substitution

Skills you should have

1. Be able to compute basic limits graphically, algebraically, and from a table of numbers
2. Be able to compute derivatives and tangent lines using the definition of the derivative; that is, using $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ instead of the derivative rules
3. Be able to determine graphically if a function is continuous or differentiable
4. Be able to compute derivatives and tangent lines using the various derivative rules and formulas
5. Be able to compute derivatives of implicitly defined functions, e.g. $\sin (x y)=x^{2}+e^{y}$
6. Be able to interpret the first and second derivatives of a function f
(a) Connection between f^{\prime} positive/negative and f increasing/decreasing
(b) Connection between $f^{\prime \prime}$ positive/negative and f concave up/down
(c) Finding local extrema and inflection points
(d) Use first and second derivatives (and asymptotes, limits at infinity, ...) to sketch graphs
7. Be able to solve related rates problems
(a) Know what is constant with respect to time and what is not
8. Be able to find absolute maximums and minimums of a function f on an interval I
(a) Finding and testing critical points of f and endpoints of I
(b) Be able to work in the context of a word problem where YOU have to determine the function to optimize and the interval to optimize over
9. Using L'Hôpital's rule
(a) The rule only applies to limits of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$
(b) Know how to deal with limits of the form $0 \cdot \infty$ by "converting to a fraction"
(c) Know how to deal with limits of the form $0^{\infty}, 1^{\infty}, 0^{0}$, and ∞^{0} using logarithms
10. Be able to approximate $\int_{a}^{b} f(x) d x$ (or the net area under a function) using R_{n}, L_{n}, or M_{n} for a fixed value of n (like $n=6$).
11. Be able to evaluate a definite integral $\int_{a}^{b} f(x) d x$ using...
(a) geometry: thinking of $\int_{a}^{b} f(x) d x$ as the net area between f and the x-axis from a to b
(b) FTC 2: $\int_{a}^{b} f(x) d x=F(b)-F(a)$ for F an antiderivative of f
12. Be able to find indefinite integrals and antiderivatives
(a) know common antiderivatives
(b) practice u-substitution
(c) don't forget the " $+C$ "

How to study

I. Review core topics
II. Work lots of problems all of the way through-focus on WeBWorK problems and Worksheet problems
III. Practice doing several problems in a short amount of time (by timing yourself)
IV. Come talk with me if you have any questions

