\qquad

Author 2 \qquad

03 - Introduction to Limits

Author 3 \qquad

1. Suppose $f(x)$ is a mystery function for which some values are given (approximately) below.

x	-2	-1	-0.5	-0.1	0	0.1	0.5	1	2
$f(x)$	0.45	0.84	0.96	0.998		0.998	0.96	0.84	0.45

(a) Based on this data, what do you think is the value of $f(0)$?
(b) Look in the lower-left corner of page 2 to see what the mystery function is. Does this change your answer about $f(0)$? Explain.
2. Suppose the graph of a function $h(x)$ is given below. Find the value of each of the following below.

(a) $h(0)=$
(c) $h(2)=$
(e) $h(4)=$
(b) $h(1)=$
(d) $h(3)=$

So, there can be a big difference between the actual value of a function at a number a and what the values are approaching near a. The next definition captures what the values are approaching.

Definition: Limits (Informally)

We write $\lim _{x \rightarrow a} f(x)=L$ if the value of $f(x)$ can be made to stay arbitrarily close to L for all x sufficiently close to a, but not equal to a.

- $\lim _{x \rightarrow a} f(x)$ is asking where the outputs of the function appear to be going as x approaches a.
- $\lim _{x \rightarrow a} f(x)=L$ is read "the limit of $f(x)$ as x approaches a is L ".

3. Answer the following questions about the functions f and h from above.
(a) $\lim _{x \rightarrow 0} f(x)=$
(c) $\lim _{x \rightarrow 1} h(x)=$
(e) $\lim _{x \rightarrow 3} h(x)=$
(b) $\lim _{x \rightarrow 0} h(x)=$
(d) $\lim _{x \rightarrow 2} h(x)=$
(f) $\lim _{x \rightarrow 4} h(x)=$

From the left: only considering x-values less than a, we define $\lim _{x \rightarrow a^{-}} f(x)=L$.
From the right: only considering x-values greater than a, we define $\lim _{x \rightarrow a^{+}} f(x)=L$.
4. Answer the following questions about the functions f and h (from the previous page).
(a) $\lim _{x \rightarrow 0^{-}} f(x)=$
(c) $\lim _{x \rightarrow 1^{-}} h(x)=$
(e) $\lim _{x \rightarrow 2^{-}} h(x)=$
(b) $\lim _{x \rightarrow 1^{+}} h(x)=$
(d) $\lim _{x \rightarrow 2^{+}} h(x)=$
(f) $\lim _{x \rightarrow 4^{-}} h(x)=$
5. Investigate $\lim _{x \rightarrow 0^{+}} \sin \left(\frac{\pi}{2 x}\right)$ by following the steps below.
(a) Fill in the table below, and use it to make a guess about $\lim _{x \rightarrow 0^{+}} \sin \left(\frac{\pi}{2 x}\right) \cdot$ (I did the first one.)

x	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$	0
$\sin \left(\frac{\pi}{2 x}\right)$	$\sin \left(\frac{\pi}{5}\right)=\sin (5 \pi)=0$			

Use the table to make a guess about $\lim _{x \rightarrow 0^{+}} \sin \left(\frac{\pi}{2 x}\right)=$
(b) Find the value of $\sin \left(\frac{\pi}{2 x}\right)$ when $x=\frac{1}{1001}$. Does this change your guess about $\lim _{x \rightarrow 0^{+}} \sin \left(\frac{\pi}{2 x}\right)$?
(c) Use your phone to graph $\sin \left(\frac{\pi}{2 x}\right)$ at www.desmos.com or www.wolframalpha.com. Give your final answer to $\lim _{x \rightarrow 0^{+}} \sin \left(\frac{\pi}{2 x}\right)$ below. Make sure to explain!
6. Find the following given that $g(x)=\left\{\begin{array}{ll}\ln x, & \text { if } 0<x<1 \\ e^{x-1}-1, & \text { if } 1<x \leq 2 . \\ x+e, & \text { if } x>2\end{array}\right.$.
(a) $\lim _{x \rightarrow 1^{+}} g(x)=$
(d) $\lim _{x \rightarrow 2^{+}} g(x)=$
(b) $\lim _{x \rightarrow 1^{-}} g(x)=$
(e) $\lim _{x \rightarrow 2^{-}} g(x)=$
(c) $\lim _{x \rightarrow 1} g(x)=$
(f) $\lim _{x \rightarrow 2} g(x)=$

