\qquad

Author 2 \qquad

04 - Infinite Limits

\qquad

Definition: Infinite Limits (Informally)

We write $\lim _{x \rightarrow a} f(x)=\infty$ if the values of $f(x)$ can be made as large as we want for all x sufficiently close to a, but not equal to a.

- We similarly define $\lim _{x \rightarrow a^{+}} f(x)=\infty, \lim _{x \rightarrow a^{-}} f(x)=\infty, \lim _{x \rightarrow a} f(x)=-\infty$, etc.

1. Suppose the graph of a function $h(x)$ is given below.

(a) $\lim _{x \rightarrow 0^{-}} h(x)=$
(d) $\lim _{x \rightarrow 2^{-}} h(x)=$
(g) $\lim _{x \rightarrow 4^{-}} h(x)=$
(b) $\lim _{x \rightarrow 0^{+}} h(x)=$
(e) $\lim _{x \rightarrow 2^{+}} h(x)=$
(h) $\lim _{x \rightarrow 4^{+}} h(x)=$
(c) $\lim _{x \rightarrow 0} h(x)=$
(f) $\lim _{x \rightarrow 2} h(x)=$
(i) $\lim _{x \rightarrow 4} h(x)=$

Definition: Vertical Asymptote

A vertical line $x=a$ is called a vertical asymptote of the curve $y=f(x)$ if at least one of the following are true: $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$.
2. What are the vertical asymptotes of the graph of $y=h(x)$ above?
3. Compute each of the following by first sketching a graph.
(a) $\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=$
(b) $\lim _{x \rightarrow 1} \frac{1}{x-1}=$
4. Let $f(x)=\frac{2 x}{x-3}$. Answer the following by plugging in x-values closer and closer to 3 .
(a) $\lim _{x \rightarrow 3^{-}} f(x)=$
(b) $\lim _{x \rightarrow 3^{+}} f(x)=$
(c) $\lim _{x \rightarrow 3} f(x)=$
(d) Is the line $x=3$ an asymptote of the graph $y=f(x)$. Why or why not?
5. Compute each of the following by first sketching a graph.
(a) $\lim _{x \rightarrow 0^{+}} \ln x=$
(b) $\lim _{x \rightarrow \frac{\pi}{2}} \sin x=$

