\qquad

AUTHOR 2 \qquad

06 - Continuity

\qquad

Definition: Continuity

A function f is continuous at a number a if $\lim _{x \rightarrow a} f(x)=f(a)$, and both sides exist.

1. Suppose the graph of $y=f(x)$ is given below. Find all x-values where f is discontinuous.

Discontinuous at $x=$ \qquad

Definition: One-sided Continuity

- A function f is continuous from the left at a if $\lim _{x \rightarrow a^{-}} f(x)=f(a)$, and both sides exist.
- A function f is continuous from the right at a if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$, and both sides exist.

2. For the graph of f above, determine if f is continuous from the left, from the right, both, or neither at each of $x=-2,0,1$.
3. Sketch the graph of $y=f(x)$ (defined below), and find all values for x where f is discontinuous.

$$
f(x)= \begin{cases}x+1 & \text { if } x<0 \\ e^{x} & \text { if } 0 \leq x \leq 1 \\ 2-x & \text { if } x>1\end{cases}
$$

Discontinuous at $x=$ \qquad
4. For what value of the constant c is the function f continuous on $(-\infty, \infty)$?

$$
f(x)= \begin{cases}c x^{2}+2 x & \text { if } x<2 \\ x^{3}-c x & \text { if } x \geq 2\end{cases}
$$

f is continuous provided $c=$ \qquad
5. True or False: the function $f(x)=\tan (x)$ is continuous on its domain. Make sure to explain!

