Author 1	
Author 2	
Author 3	

Definition: Continuity

06 – Continuity

A function f is continuous at a number a if $\lim_{x \to a} f(x) = f(a)$, and both sides exist.

1. Suppose the graph of y = f(x) is given below. Find all x-values where f is discontinuous.

Discontinuous at $x = _$

Definition: One-sided Continuity

- A function f is continuous from the left at a if $\lim_{x\to a^-} f(x) = f(a)$, and both sides exist.
- A function f is continuous from the right at a if $\lim_{x \to a^+} f(x) = f(a)$, and both sides exist.
- 2. For the graph of f above, determine if f is continuous from the left, from the right, both, or neither at each of x = -2, 0, 1.

3. Sketch the graph of y = f(x) (defined below), and find all values for x where f is discontinuous.

Discontinuous at x = _____

4. For what value of the constant c is the function f continuous on $(-\infty, \infty)$?

$$f(x) = \begin{cases} cx^2 + 2x & \text{if } x < 2\\ x^3 - cx & \text{if } x \ge 2 \end{cases}$$

f is continuous provided c =_____

5. True or False: the function $f(x) = \tan(x)$ is continuous on its domain. Make sure to explain!