Author 1	
Author 2	
Author 3	

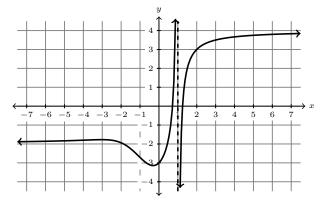
07 - Limits at Infinity

Definition: Limits at Infinity (Informally)

Suppose f is defined on some interval (a, ∞) . We write $\lim_{x \to \infty} f(x) = L$ if the values of f(x) can be made to stay arbitrarily close to L by taking x sufficiently large.

- We similarly define $\lim_{x \to -\infty} f(x) = L$.
- 1. Find the following limits.

(a)
$$\lim_{x \to \infty} \frac{1}{x}$$
 (d) $\lim_{x \to -\infty} \left(\frac{1}{x} + 2\right)$


(b) $\lim_{x \to \infty} e^x$ (e) $\lim_{x \to -\infty} e^x$

(c)
$$\lim_{x \to \infty} \sin(x)$$
 (f) $\lim_{x \to -\infty} \arctan(x)$

Definition: Horizontal Asymptote

A horizontal line y = L is called a **horizontal asymptote** of the curve y = f(x) if at least one of the following are true: $\lim_{x\to\infty} f(x) = L$ or $\lim_{x\to-\infty} f(x) = L$.

2. Find all vertical and horizontal asymptotes of the graph given below.

(a) Vert. asymptotes:

(b) Hor. asymptotes:

3. Find the following limits.

(a)
$$\lim_{x \to -\infty} \frac{2x^3 + x + 1}{7 + 5x^3}$$

(b)
$$\lim_{x \to -\infty} \frac{2x^3 + x + 1}{\sqrt{7 + 5x^6}}$$

(c)
$$\lim_{x \to \infty} (e^x - xe^x)$$