\qquad

Author 2 \qquad

07 - Limits at Infinity

\qquad

Definition: Limits at Infinity (Informally)

Suppose f is defined on some interval (a, ∞). We write $\lim _{x \rightarrow \infty} f(x)=L$ if the values of $f(x)$ can be made to stay arbitrarily close to L by taking x sufficiently large.

- We similarly define $\lim _{x \rightarrow-\infty} f(x)=L$.

1. Find the following limits.
(a) $\lim _{x \rightarrow \infty} \frac{1}{x}$
(d) $\lim _{x \rightarrow-\infty}\left(\frac{1}{x}+2\right)$
(b) $\lim _{x \rightarrow \infty} e^{x}$
(e) $\lim _{x \rightarrow-\infty} e^{x}$
(c) $\lim _{x \rightarrow \infty} \sin (x)$
(f) $\lim _{x \rightarrow-\infty} \arctan (x)$

Definition: Horizontal Asymptote

A horizontal line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if at least one of the following are true: $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$.
2. Find all vertical and horizontal asymptotes of the graph given below.

(a) Vert. asymptotes: \qquad
(b) Hor. asymptotes: \qquad
3. Find the following limits.
(a) $\lim _{x \rightarrow-\infty} \frac{2 x^{3}+x+1}{7+5 x^{3}}$
(b) $\lim _{x \rightarrow-\infty} \frac{2 x^{3}+x+1}{\sqrt{7+5 x^{6}}}$
(c) $\lim _{x \rightarrow \infty}\left(e^{x}-x e^{x}\right)$

