\qquad

Author 2 \qquad

15 - Inverse Trig \& Logs

\qquad

Theorem: Derivatives of the Inverse Trigonometric Functions

- $(\arcsin x)^{\prime}=\left(\sin ^{-1} x\right)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$
- $(\arctan x)^{\prime}=\left(\tan ^{-1} x\right)^{\prime}=\frac{1}{1+x^{2}}$
- $(\operatorname{arcsec} x)^{\prime}=\left(\sec ^{-1} x\right)^{\prime}=\frac{1}{x \sqrt{x^{2}-1}}$
- $(\arccos x)^{\prime}=\left(\cos ^{-1} x\right)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}$
- $(\operatorname{arccot} x)^{\prime}=\left(\cot ^{-1} x\right)^{\prime}=-\frac{1}{1+x^{2}}$
- $(\operatorname{arccsc} x)^{\prime}=\left(\csc ^{-1} x\right)^{\prime}=-\frac{1}{x \sqrt{x^{2}-1}}$

Theorem: Derivatives of Logarithmic Functions

- $(\ln x)^{\prime}=\frac{1}{x}$
- $(\ln |x|)^{\prime}=\frac{1}{x}$
- $\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a}$

1. Find the derivative.
(a) $y=\frac{\arcsin (1-x)}{\ln \left(x^{5}\right)}$
(b) $y=\ln \left(\arctan \left(x^{3}\right) \log _{3}(x)\right)$
(c) $e^{2 x} y=\ln \left(y^{3}\right)$
2. Consider the function $f(x)=x^{\sin x}$.
(a) A classmate tells you that $f^{\prime}(x)=(\sin x) x^{(\sin x)-1}$. What are they thinking? What is the error?
(b) Find $f^{\prime}(x)$ by using logarithmic differentiation.
