\qquad

Author 2 \qquad
20 - Finding Max's \& Min's
Author 3 \qquad

Theorem: Local Extrema Theorem

If f has a local max or min at $x=c$, then $f^{\prime}(c)=0$ or $f^{\prime}(c)$ DNE.

Definition: Critical Number

We say that c is a critical number of f if c is in the domain of f and either $f^{\prime}(c)=0$ of $f^{\prime}(c)$ DNE.

1. Find the critical numbers of each of the following.
(a) $f(x)=2 x^{3}-3 x^{2}-36 x$
(b) $g(x)=3 x^{\frac{2}{3}}-x$

Suppose you want to find the absolute extrema of f on an interval I.

1. Find all critical numbers of f in I.
2. Compute

- the value of $f(c)$ for every critical number c and
- the values of f at the endpoints of I.

The largest value is the absolute max and the smallest is the absolute min.
2. Find the absolute extrema of $f(x)=x^{2} e^{-3 x}$ on $[-1,1]$.

