\qquad

Author 2 \qquad
\qquad

1. For each part, draw (if possible) the graph of a function f that has the given properties:
(a)

- f is continuous on $[-2,4]$
- f is differentiable on $(-2,4)$
- f has NO horizontal tangent lines

(b)
- f is continuous on $[-2,4]$
- $f(-2)=f(4)$
- f has NO horizontal tangent lines

(c)
- f is continuous on $[-2,4]$
- f is differentiable on $(-2,4)$
- $f(-2)=f(4)$
- f has NO horizontal tangent lines

Suppose that f is continuous on $[a, b]$ and f is differentiable on (a, b). Then there is at least one number c in the interval (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Theorem: Functions with the Same Derivative
If $f^{\prime}(x)=g^{\prime}(x)$, then $f(x)=g(x)+C$ for some constant C.
2. Let $h(x)=\sin (x)+1$
(a) Find a function whose derivative is $h(x)$. That is, find a formula for $f(x)$ such that $f^{\prime}(x)=h(x)$.
(b) Find a different function whose derivative is $h(x)$.
(c) How many different functions do you think there are whose derivative is $h(x)$?
(d) Use the theorem above to write an expression that represents all functions whose derivative is $h(x)$.

