\qquad

Author 2 \qquad

22 - Increasing/Decreasing \& Concavity

AUTHOR 3 \qquad

Definition: Increasing/Decreasing \& Concavity

Let f be a function and I an interval.

- f is increasing on I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
- f is decreasing on I if if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
- f is concave up on I if the graph of f lies above all of its tangent lines on I.
- f is concave down on I if the graph of f lies below all of its tangent lines on I.
- An inflection point of f is a point where f is continuous and the concavity of f changes.

1. The graph of $f(x)$ is below.

(a) On what intervals is f increasing?
(b) On what intervals is f decreasing?
(c) List the x-values of the local extrema?
(d) On what intervals is f concave up?
(e) On what intervals is f concave down?
(f) List the x-values of the inflection points?
2. On the graph above, draw four tangent lines anywhere between $x=1$ and $x=3$. Describe how the slopes of the tangent lines are changing as x varies from 1 to 3 . What does this mean about $f^{\prime}(x)$?

Let f be a function and I an interval.

- f is increasing on I if $f^{\prime}(x)>0$ on I.
- f is decreasing on I if $f^{\prime}(x)<0$ on I.
- f is concave up on I if $f^{\prime \prime}(x)>0$ on I.
- f is concave down on I if $f^{\prime \prime}(x)<0$ on I.

3. For each blank below, choose the shape of the graph described by the conditions on f^{\prime} and $f^{\prime \prime}$.

$f^{\prime}(x)<0$

$$
f^{\prime}(x)<0
$$

$f^{\prime \prime}(x)>0$ \qquad
$f^{\prime}(x)>0$
$f^{\prime \prime}(x)<0$ \qquad

$$
\begin{aligned}
f^{\prime}(x) & >0 \\
f^{\prime \prime}(x) & >0
\end{aligned}
$$

\qquad

$$
f^{\prime \prime}(x)<0
$$

\qquad
4. Draw the graph of a function f that has the given properties:

- f is discontinuous at $x=4$
- $f^{\prime}(x)<0$ only when $3<x<4$,
- $f^{\prime \prime}(x)>0$ only when $0<x<2$
- $\lim _{x \rightarrow \infty} f(x)=1$

(a) List the x-values of the local extrema?
(b) List the x-values of the inflection points?

