Author 1	
Author 2	

24 - L'Hôpital's Rule

Author 3 -

Theorem: L'Hôpital's Rule (HR)

Suppose f and g are differentiable and $g'(x) \neq 0$ near a, except possibly at a. If $\lim_{x \to a} \frac{f(x)}{g(x)}$ has the form $\frac{\infty}{\infty}$ or $\frac{0}{0}$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided the limit on the right exists or is $\pm \infty$. Moreover, HR remains true with $x \to a$ replaced by any of $x \to a^+$, $x \to a^-$, $x \to \infty$, or $x \to -\infty$.

1. Find the following limits.

(a)
$$\lim_{x \to 1} \frac{x \sin(x-1)}{2x^2 - x - 1}$$

(b) $\lim_{x \to -\infty} x^2 e^x$

(c)
$$\lim_{x \to 0^-} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$$

- **2.** Consider the limit $\lim_{x\to 0^+} (\cos x)^{1/x^2}$.
 - (a) What does "direct substitution" yield for the limit $\lim_{x\to 0^+} (\cos x)^{1/x^2}$?
 - (b) Find $\lim_{x\to 0^+} (\cos x)^{1/x^2}$ (by using logarithms).