\qquad

25 - Optimization

Author 3 \qquad

1. A large storage crate, with an open top, is to be constructed. The base needs to be a square. Material for the base costs $\$ 10$ per square meter, and material for the sides costs $\$ 6$ per square meter. If there is $\$ 100$ available to spend on the crate, what is the greatest volume of crate that can be built?
2. A large storage crate, with an open top, is to be constructed. The length of the base needs to be twice the width of the base and the volume must be $10 \mathrm{~m}^{3}$. Material for the base costs $\$ 10$ per square meter, and material for the sides costs $\$ 6$ per square meter. What is the cost of the materials for the cheapest such container.
