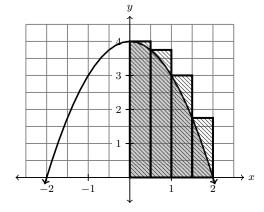
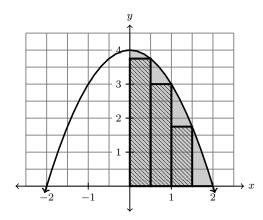

1. The graph of $f(x) = 4 - x^2$ is below. Let A be the area under f(x) from x = 0 to x = 2.

- (a) Give your best estimate of the area A that you can.


 Make sure to explain your answer.
- (b) Was your estimate an over or underestimate (or are you not sure)?

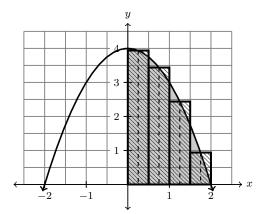
(c) Compute the area in the 2 large rectangles. This estimate of A is called L_2 .

$$L_2 =$$


(d) Is L_2 an over or underestimate (or not sure)? Why?

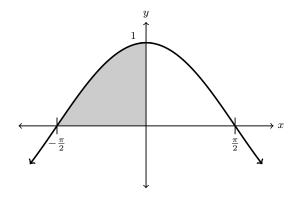
(e) Compute the area in the 4 large rectangles. This estimate of A is called L_4 .

$$L_4 =$$


(f) Is L_4 an over or underestimate (or not sure)? Why?

(g) Repeat for these 4 rectangles. This is R_4 . (Do you see where the 4^{th} one is?)

$$R_4 =$$


(h) Is R_4 an over or underestimate (or not sure)?

(i) Repeat for these 4 rectangles. This is M_4 . To find the heights, use the fact that $f(x) = 4 - x^2$.

$$M_4 =$$

- (j) Is M_4 an over or underestimate (or not sure)?
- (i) Which do you think is the best estimate of A? How could you get a better estimate?
- **2.** The graph of $f(x) = \cos x$ is below. Let A be the area under $\cos(x)$ from $x = -\frac{\pi}{2}$ to x = 0.

(a) Estimate A using R_3 , and draw the associated rectangles.

$$R_3 =$$

(b) Is R_3 an over or underestimate (or not sure)?