\qquad

Author 2 \qquad
28 - Antiderivatives \& The Indefinite Integral
Author 3 \qquad

Definition: Antiderivative
We say that F is an antiderivative for f if $F^{\prime}(x)=f(x)$.

Theorem: General Antiderivative

If F is any one antiderivative for f, then every antiderivative for f has the form

$$
F(x)+C
$$

where C is an arbitrary constant. This is called the general antiderivative.

1. Find the general antiderivative of each of the following.
(a) $f(x)=x^{4}$
(b) $f(x)=2 \cos x+1$

Definition: Indefinite Integral

If F is any antiderivative for f, then we use an indefinite integral to represent the general antiderivative as follows:

$$
\int f(x) d x=F(x)+C
$$

2. Find a formula for each of the following.
(a) $\int x^{-3}+\sec ^{2}(x) d x$
(b) $\int \frac{2}{\sqrt{1-x^{2}}} d x$

Theorem: Antiderivatives of Power Functions

- $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ for $n \neq-1$
- $\int x^{-1} d x=\ln |x|+C$

3. Compute.
(a) $\int \sqrt{x}\left(1+x^{\frac{5}{2}}\right) d x$
(b) $\int \frac{2}{\sqrt{1-x^{2}}} d x$
(c) $\int \frac{3+x^{-3}}{x} d x$
(d) $\int \cos (2 x) d x$
