Calculus 1 — Outline for the Final Exam

Anything that is crossed out will NOT be on the final exam!

Main ideas

Old

- A. Limits (one-sided, two-sided, and at infinity) and continuity
- **B.** The derivative of a function and tangent lines
- C. Derivative formulas for power, trigonometric, inverse trig., exponential, and logarithmic functions

Only these: x^n , e^x , $\ln x$, $\sin(x)$, $\cos(x)$, $\tan(x)$, $\sec(x)$, $\arcsin(x)$, $\arctan(x)$, $\arccos(x)$

- **D.** Derivative rules including product, quotient and chain rules
- E. Implicit differentiation
- **F.** Interpreting f' and f'': increasing/decreasing, local extrema, concavity, inflection points
- G. Using derivatives to find absolute extrema
- **H.** Applications of differentiation to related rates and optimization
- I. L'Hôpital's rule

New

- **J.** Definition of the definite integral and the (net) area under a curve
- K. Fundamental Theorem of Calculus and net change of a function
- L. Indefinite integrals and antiderivatives
- M. Substitution

Skills you should have

- 1. Be able to compute basic limits graphically, algebraically, and from a table of numbers
- 2. Be able to compute derivatives and tangent lines using the definition of the derivative; that is, using $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ instead of the derivative rules
- 3. Be able to determine graphically if a function is continuous or differentiable
- 4. Be able to compute derivatives and tangent lines using the various derivative rules and formulas
- **5.** Be able to compute derivatives of implicitly defined functions, e.g. $\sin(xy) = x^2 + e^y$
- **6.** Be able to interpret the first and second derivatives of a function f
 - (a) Connection between f' positive/negative and f increasing/decreasing
 - (b) Connection between f'' positive/negative and f concave up/down
 - (c) Finding local extrema and inflection points

- (d) Use first and second derivatives (and asymptotes, limits at infinity, ...) to sketch graphs
- 7. Be able to find absolute maximums and minimums of a function f on an interval I
 - (a) Finding and testing critical points of f and endpoints of I
 - (b) Be able to work in the context of a word problem where YOU have to determine the function to optimize and the interval to optimize over
- 8. Using L'Hôpital's rule
 - (a) The rule only applies to limits of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$
 - (b) Know how to deal with limits of the form $0 \cdot \infty$ and $\infty \infty$ by converting to a fraction
 - (c) Know how to deal with limits of the form 0^{∞} , 1^{∞} , 0^{0} , and ∞^{0} using logarithms
- **9.** Be able to approximate $\int_a^b f(x) dx$ (or the net area under a function) using R_n , L_n , or M_n for a fixed value of n (like n = 6).
- 10. Be able to evaluate a definite integral $\int_a^b f(x) dx$ using...
 - (a) geometry: thinking of $\int_a^b f(x) dx$ as the net area between f and the x-axis from a to b
 - **(b)** FTC 2: $\int_a^b f(x) dx = F(b) F(a)$ for F an antiderivative of f
- 11. Be able to find indefinite integrals and antiderivatives
 - (a) know common antiderivatives
 - **(b)** practice *u*-substitution
 - (c) don't forget the "+ C"

How to study

- I. Review core topics
- II. Work lots of problems all of the way through—focus on WeBWorK problems and Worksheet problems
- III. Practice doing several problems in a short amount of time (by timing yourself)
- IV. Come talk with me if you have any questions