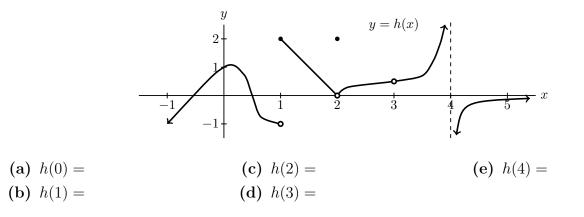
Author 1	
Author 2	-
Author 3	-

03 – Introduction to Limits

1. Suppose f(x) is a mystery function for which some values are given (approximately) below.

x	-2	-1	-0.5	-0.1	0	0.1	0.5	1	2
f(x)	0.45	0.84	0.96	0.998		0.998	0.96	0.84	0.45

- (a) Based on this data, what do you think is the value of f(0)?
- (b) Look in the lower-left corner of page 2 to see what the mystery function is. Does this change your answer about f(0)? Explain.
- **2.** Suppose the graph of a function h(x) is given below. Find the value of each of the following below.



So, there can be a **big** difference between the *actual* value of a function at a number *a* and what the values are *approaching* near a. The next definition captures what the values are approaching.

Definition: Limits (Informally)

We write $\lim f(x) = L$ if the values of f(x) can be made to stay arbitrarily close to L for all x sufficiently close to a, but not equal to a.

- $\lim_{x \to a} f(x)$ is asking where the outputs of the function *appear* to be going as x approaches a.
- $\lim f(x) = L$ is read "the limit of f(x) as x approaches a is L". •
- **3.** Answer the following questions about the functions f and h from above.
 - (a) $\lim_{x \to 0} f(x) =$ (c) $\lim_{x \to 1} h(x) =$ (d) $\lim_{x \to 2} h(x) =$ (e) $\lim_{x \to 3} h(x) =$

Definition: One-Sided Limits (Informally)

From the left: only considering x-values less than a, we define $\lim f(x) = L$.

From the right: only considering x-values greater than a, we define $\lim_{x \to a^+} f(x) = L$.

- 4. Answer the following questions about the functions f and h (from the previous page).
 - (a) $\lim_{x \to 0^{-}} f(x) =$ (c) $\lim_{x \to 1^{-}} h(x) =$ (e) $\lim_{x \to 2^{-}} h(x) =$ (b) $\lim_{x \to 1^{+}} h(x) =$ (d) $\lim_{x \to 2^{+}} h(x) =$ (f) $\lim_{x \to 4^{-}} h(x) =$
- 5. Investigate $\lim_{x\to 0^+} \sin\left(\frac{\pi}{2x}\right)$ by following the steps below.
 - (a) Fill in the table below, and use it to make a guess about $\lim_{x\to 0^+} \sin\left(\frac{\pi}{2x}\right)$. (I did the first one.)

<i>x</i>	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$	0
$\sin\left(\frac{\pi}{2x}\right)$	$\sin\left(\frac{\pi}{\frac{1}{5}}\right) = \sin(5\pi) = \boxed{0}$			

Use the table to make a guess about $\lim_{x\to 0^+} \sin\left(\frac{\pi}{2x}\right) =$

- (b) Find the value of $\sin\left(\frac{\pi}{2x}\right)$ when $x = \frac{1}{1001}$. Does this change your guess about $\lim_{x \to 0^+} \sin\left(\frac{\pi}{2x}\right)$?
- (c) Use your phone to graph $\sin\left(\frac{\pi}{2x}\right)$ at www.desmos.com or www.wolframalpha.com. Give your final answer to $\lim_{x\to 0^+} \sin\left(\frac{\pi}{2x}\right)$ below. Make sure to explain!

6. Find the following given that $g(x) = \begin{cases} \ln x, & \text{if } 0 < x < 1\\ e^{x-1} - 1, & \text{if } 1 < x \le 2.\\ x + e, & \text{if } x > 2 \end{cases}$

(a)
$$\lim_{x \to 1^+} g(x) =$$
 (d) $\lim_{x \to 2^+} g(x) =$

- (b) $\lim_{x \to 1^{-}} g(x) =$ (e) $\lim_{x \to 2^{-}} g(x) =$
- (c) $\lim_{x \to 1} g(x) =$ (f) $\lim_{x \to 2} g(x) =$