EXAM 2-REVIEW QUESTIONS

MODERN ALGEBRA

Questions (answers are on page 3)

Examples. For each of the following, either provide a specific example which satisfies the given description, or if no such example exists, briefly explain why not.
(1) (JH) Integral domain that is not a field.
(2) (JB) A polynomial of degree 5 that is irreducible over \mathbb{Q} by EIC with the coefficient of x^{2} equal to 1
(3) $\left(\mathrm{JB}_{2}\right)$ An ideal of $\mathbb{Z}[x]$
(4) (JT) A polynomial of degree at least 4 that fails EIC and is reducible
(5) (TB) Let K be an extension field of \mathbb{Q}. Give an example of K where K is not a vector space over \mathbb{Q}.
(6) (PS) Nonzero polynomial $p(x), a(x), b(x) \in \mathbb{Q}[x]$ such that $p(x)$ divides $a(x) b(x)$ but $p(x)$ does not divide $a(x)$ or $b(x)$
(7) (JR) A prime that makes $p(x)=x^{4}+30 x^{3}+60 x^{2}+30 x+900$ irreducible by EIC
(8) (ST) A polynomial of degree 20 that is irreducible over \mathbb{Q}
(9) (NL) Give a set that is a noncommutative ring with unity
(10) (OA) Provide three vector spaces L, K, F such that $L \subseteq K \subseteq F$ and the dimension of F over L is twice the dimension of K over L
(11) (RM) Provide an example of a subring that is not an ideal.
(12) (MM) Give an example of a reducible polynomial of degree 5 .
(13) (PC) A number $\sqrt[n]{m} \in \mathbb{Q}(\sqrt[p]{q})$ where $n>p, m, q$ are prime, and $n, m, p, q \in \mathbb{Z}$.
(14) (ZA) A non trivial ideal of a noncommutative ring
(15) (EH) Give an example of a principle ideal domain
(16) (ED) Two polynomials contained in an ideal I of $\mathbb{Q}[x]$ that guarantee that $I=\mathbb{Q}[x]$.
(17) (MJ) Give an example of a ring that is not an integral domain.
(18) (JM) A polynomial of the form $a x^{3}+b x^{2}+c x+d$ such that d divides a that is irreducible by EIC.
(19) (AJ) A minimal polynomial for $\sqrt[3]{2}$ over \mathbb{Q} other than $m(x)=x^{3}-2$.
(20) (LK) A ring, R, with $a, x, y \in R$ and $a \neq 0$ such that $a x=a y$ or $x a=y a$ and $x \neq y$.
(21) (CH) Find a minimal polynomial such that $\left[\zeta_{5}: \mathbb{Q}\right]=5$.
(22) (JD) A set R that is a ring with unity, but has no further properties.
(23) (AB) Give an example of a commutative ring that is not a ring with unity.
(24) (KH) Give an example of an ideal that is not principle.

True or False.

(25) $(\mathrm{JH}) \sqrt[3]{2} \in \mathbb{Q}(\sqrt{2})$
(26) (JB) For all n, the minimum polynomial of ζ_{n} has degree $n-1$
(27) $\left(\mathrm{JB}_{2}\right)$ Let $I \subseteq \mathbb{Q}[x]$ be an ideal. For $p(x), q(x) \in I$ and $\operatorname{gcd}(p(x), q(x))=1, I=\mathbb{Q}[x]$
(28) (JT) All ideals are principal ideals
(29) (PS) The even integers form an ideal of \mathbb{Z}
(30) $(\mathrm{JR}) \mathbb{Z}_{4}[x]$ is an integral domain
(31) (ST) If $4=[r: \mathbb{Q}]$ then $\mathbb{Q}(r)=\left\{a_{0}+a_{1} r+a_{2} r^{2}+a_{3} r^{3}+a_{4} r^{4} \mid a_{i} \in \mathbb{Q}\right\}$
(32) (NL) $x^{6}+4 x+4$ is irreducible in $\mathbb{Q}[x]$ by EIC with $p=4$
(33) (OA) Let $I=\{g(x) \in \mathbb{Q}[x] \mid g(\sqrt[3]{5})=0\}$. Then I is an ideal in $\mathbb{Q}[x]$
(34) (RZ) $F[x]$ is an integral domain if F is a ring
(35) (RM) $\mathbb{Z}[x]$ is a principal ideal domain.
(36) (MM) A vector space is nontrivial if it has at least one element.
(37) (PC) The empty set is an ideal of \mathbb{Z}.
(38) (ZA) Every Ring has an ideal.
(39) (EH) $p(x)=x^{7}+3 x^{5}+12 x^{4}+6 x^{3}+3 x^{2}+9$ is reducible in $\mathbb{Q}[x]$.
(40) (ED) A commutative ring does not need to have a unit element and a ring with a unit element does not need to be commutative.
(41) (MJ) $p(x)=x^{2}+1$ is irreducible over \mathbb{Z}_{2}.
(42) (JM) Let F be a subfield of E and let $r \in E$. Then any polynomial $p(x) \in F[x]$ such that $p(r)=0$ can be used to show r is algebraic over F.
(43) (SL) The polynomial $p(x)=x^{7}+2+2$ is irreducible over \mathbb{Q}.
(44) (AJ) The polynomial $p(x)=x^{5}-3 x^{4}+3 x^{2}-3$ is irreducible over $\mathbb{Q}(\sqrt{2})$ by EIC with $p=3$.
(45) (LK) Let F be a field and D be an integral domain such that $F \subseteq D$. Then D is a vector space over F.
(46) (CH) Eisenstein's Irreducibility Criterion applies to polynomials in $\mathbb{Q}[x]$.
(47) (JD) \mathbb{R} is both a subring and an ideal of \mathbb{C}
(1) $\mathbb{Q}[x]$
(2) Impossible, because no prime divides 1
(3) $I=(2 \mathbb{Z})[x]$
(4) $x^{4}-1=\left(x^{2}+1\right)\left(x^{2}-1\right)$ and no prime divides 1
(5) Not possible. If E is an extension of a field F then E is always a vector space over F
(6) $p(x)=x^{2}-4, a(x)=x-2, b(x)=x+2$
(7) Not possible. If p divides 30 then p^{2} divides 900
(8) $p(x)=x^{20}-2$
(9) \mathbb{H}
(10) $\mathbb{Q}=L, \mathbb{Q}(\sqrt{2})=K, \mathbb{Q}(\sqrt{2}, i)=F$
(11) $\mathbb{Z}[x] \subset \mathbb{Q}[x]$
(12) $x^{5}-1=(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right)$
(13) No such example exists by Prop 12.5 or Prop 12.10
(14) $M_{2 x 2}(2 \mathbb{Z}) \subset M_{2 x 2}(\mathbb{Z})$
(15) \mathbb{Z}
(16) $p(x)=x^{4}+x^{3}+x^{2}+x+1$ and $q(x)=x^{6}+4 x^{4}-6 x^{3}+2$
(17) $2 \mathbb{Z}$, because it doesn't have unity 1
(18) Impossible, because if some prime p divides d (and if d divides a), then p will divide a and thus fail EIC.
(19) Impossible. The minimal polynomial for any r over F is unique.
(20) \mathbb{Z}_{6}
(21) Impossible, $x^{5}-1$ can be reduced to $x^{4}+x^{3}+x^{2}+x+1$ which has a degree of 4 .
(22) $R=M_{2 x 2}(\mathbb{R})$
(23) $2 \mathbb{Z}$
(24) $I=\{2 p(x)+x q(x) \mid p(x), q(x) \in \mathbb{Z}[x]\} \subset \mathbb{Z}[x]$
(25) F , compare $[\sqrt[3]{2}: \mathbb{Q}]$ and $[\sqrt{2}: \mathbb{Q}]$ and use 12.5 or 12.10
(26) $\mathrm{F}, \zeta_{4}=i$ and the min. poly. is $x^{2}+1$
(27) T , because $\operatorname{gcd}(p(x), q(x)) \in I$ and if $1 \in I$ then I is the whole ring.
(28) F , consider the ring $\mathbb{Z}[x]$ and the ideal $\{2 p(x)+x q(x) \mid p(x), q(x) \in \mathbb{Z}[x]\}$
(29) T
(30) $\mathrm{F},[2]_{4} *[2]_{4}=0$
(31) T, BUT note that $\left\{1, r, \ldots, r^{4}\right\}$ is NOT a basis for $\mathbb{Q}(r)$ over \mathbb{Q}
(32) F , because 4 is not a prime
(33) T, just use the Ideal Criteria Prop.
(34) $\mathrm{F}, \mathbb{Z}_{4}[x]$ is not an integral domain because $[2]_{4} *[2]_{4}=0$
(35) $\mathrm{F}, I=\{2 p(x)+x q(x) \mid p(x), q(x) \in \mathbb{Z}[x]\}$ is not principle.
(36) F , a vector space is nontrivial if it has at least two elements.
(37) F , the empty set is not an ideal of \mathbb{Z} by Prop 9.2.
(38) T , the set containing just zero is always an ideal
(39) ?, EIC doesn't apply, so don't know anything.
(40) T, see Chapter 7 Page 98
(41) $\mathrm{F}, p(x)=x^{2}+1=(x+1)^{2}$ in \mathbb{Z}_{2}.
(42) F , if $p(x)=0$ then $p(r)=0$, but you must use a nonzero polynomial to show r is algebraic.
(43) T, apply EIC with $p=2$.
(44) F, EIC cannot be directly applied to show the polynomial is irreducible over $\mathbb{Q}(\sqrt{2})$, as EIC only guarantees irreducibility over \mathbb{Q}.
(45) T , similar explanation to $\# 5$ but for integral domain
(46) F, EIC can only be applied to polynomials in $\mathbb{Z}[x]$.
(47) F, \mathbb{R} is not an ideal of \mathbb{C}

