EXAM 3-REVIEW QUESTIONS

MODERN ALGEBRA

Questions (ANswers are on page 2)

Examples. For each of the following, either provide a specific example which satisfies the given description, or if no such example exists, briefly explain why not.
(1) (CK) A subgroup of S_{5} containing a transposition and a 5 -cycle such that $S \neq S_{5}$
(2) (JH) An nonprime integer n such that S_{n} is generated by any subset containing an n-cycle and a transposition.
(3) (JB) A group that contains only two elements.
(4) (WS) An example of a nonabelian group with exactly 8 elements
(5) (JT) A homomorphism of groups that is one-to-one but not onto
(6) (PS) An element of S_{8} of order 8 that is not an 8 -cycle.
(7) (HD) A homomorphism that is onto but not one-to-one
(8) (AW) A group that is not cyclic
(9) (NL) A cyclic group that is nonabelian.
(10) (MG) Two disjoint cycles in S_{6} that do not commute
(11) (EH) An element g in S_{8} where $|g|=5$
(12) An abelian group.
(13) (AB) An element in S_{7} that has order greater than 7 .
(14) (PC) Give an example where $[K: \mathbb{Q}]$ is finite and $|G a l K / \mathbb{Q}| \neq[K: \mathbb{Q}]$.

True or False.
(15) (JH) Let f^{\prime} denote the usual derivative of a function. If $d: \mathbb{R}[x] \rightarrow \mathbb{R}[x]: f \mapsto f^{\prime}$, then d is onto.
(16) (JB) If a group G has infinite order, then the only element of G that does not have infinite order is the identity.
(17) (WS) If a group contains only 2 elements then it is abelian.
(18) (JT) The number of elements in $\operatorname{Gal}\left(\mathbb{Q}\left(\sqrt[5]{7}, \zeta_{5}\right) / \mathbb{Q}\right)$ is 25 .
(19) (HD) There are at least 2 subgroups of every group.
(20) (OA) All infinite groups are noncyclic.
(21) (RZ) If I is an ideal of a ring R, then $(I,+)$ is always an abelian group.
(22) (NL) The group ($\left.\mathbb{H}^{\times}, \cdot\right)$ is nonabelian.
(23) (MG) S_{21} is generated by any 21-cycle together with (23)
(24) (MG) S_{21} is generated by some 21-cycle together with (23)
(25) (RM) If A and B are subgroups, then $A \cap B$ is a subgroup of G.
(26) If F is a subfield of K and $r \in K$ is algebraic over F, then $|\operatorname{Gal} F(r) / F|=[F(r): F]$.
(27) (2135) and (4627) commute.
(28) (AB) $h: R \rightarrow C$, where, $h(r)=r+0 i$ is an automorphism.
(29) (PC) There exists an isomorphism $f: \mathbb{Q}(\sqrt{3}) \rightarrow \mathbb{Q}(\sqrt{5})$.

Answers

(1) Not possible, see Ch. 19
(2) Not possible, see Ch. 19, i.e. the property holds iff n is prime.
(3) S_{2} or $(\{ \pm 1\}, \cdot)$ or $\left(\mathbb{Z}_{2},+\right)$
(4) $Q=\{ \pm 1, \pm i, \pm j, \pm k\}$
(5) $f:(\mathbb{R},+) \rightarrow(\mathbb{C},+): x \mapsto x$
(6) Not possible, think about the lcm of numbers less than 8
(7) $f:(\mathbb{Z},+) \rightarrow\left(\mathbb{Z}_{7},+\right): x \mapsto[x]_{7}$ or $g:(\mathbb{C},+) \rightarrow(\mathbb{R},+): x+y i \mapsto x$
(8) $(\mathbb{Q},+)$ or S_{3}
(9) Not possible, see Ch. 21
(10) Not possible
(11) (12345). But as a follow-up, S_{8} has no element of order 25 by proposition 21.16
(12) $(\mathbb{Z},+)$
(13) $(12)(34567)$ has an order of 10.
(14) $K=\mathbb{Q}(\sqrt[3]{2})$
(15) T
(16) F , consider -1 in $\left(\mathbb{R}^{\times}, \cdot\right)$
(17) T
(18) F, it's 20 . Notice that $\mathbb{Q}\left(\sqrt[5]{7}, \zeta_{5}\right)=\mathbb{Q}^{x^{5}-7}$ so Prop. 14.8 applies.
(19) F, not for the "trivial" group with one element
(20) F , consider $(\mathbb{Z},+)$; it is generated by 1 .
(21) T
(22) T
(23) $\mathrm{F}, 21$ is not prime.
(24) T
(25) T
(26) Not always true. See the answer to (14). However, it is true that $\left|G a l F^{p(x)} / F\right| \leq[F(r): F]$
(27) False
(28) False, it's not onto.
(29) False

