Modern Algebra MATH 325W – Spring 2015

Monday:	Chapter 20-21: Cosets and Lagrange	
Wednesday:	Chapter 23: Normal Subgroups	Week 13
Friday:	Review for Exam 3	

Homework

Homework #22

Ch. 20: #4(b)(c), 6(b)(c), 8(b)(c), 10, 15 Ch. 21: #2, 5, 6, 8

Homework #23

due Friday, May 1

due Tuesday, April 28

Ch. 21: #20, 22, 46, 48 Ch. 23: #3, 6, 8 AP #1: Define $SL_2(\mathbb{R}) := \{A \in GL_2(\mathbb{R}) \mid \det A = 1\}$. Prove that $SL_2(\mathbb{R})$ is a normal subgroup of $GL_2(\mathbb{R})$ (with respect to matrix multiplication). You may freely use theorems from linear algebra.

WRITING ASSIGNMENTS

On writing assignments, part of your grade will reflect the quality of your *style*. Style includes everything from the basic mechanics of writing (complete, grammatically correct sentences with capitalization and proper punctuation) to the conventions of writing mathematics developed in Linear Algebra.

Writing Assignment #11

due Friday, May 01 due Wednesday, April 29

Ch. 21: #28

AP #1: Let H be a subgroup of S_5 such that H contains a transposition, and |H| is divisible by 5. Prove that $H = S_5$. Hint: you can freely use Cauchy's theorem, see Proposition 22.9.

Extra Credit: Define $SL_n(\mathbb{R}) := \{A \in GL_n(\mathbb{R}) \mid \det A = 1\}$, and note that $SL_n(\mathbb{R})$ is a subgroup of $GL_n(\mathbb{R})$. Concisely describe the left cosets of $SL_n(\mathbb{R})$ in $GL_n(\mathbb{R})$.