Modern Algebra
 MATH 325W - Spring 2015

Monday: Chapter 7: Solvability by Radicals
Wednesday: Chapter 7: Rings
Week 5
Friday: Review for Exam 1

Homework

Homework \#8

Ch. 6: 2, 3, 4, 5, 14, 18
For 14 and 18, you can freely use that $\alpha_{1}, \alpha_{2} \in \mathbb{Q}\left(\beta_{1}, \beta_{2}\right) \Longrightarrow \mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right) \subseteq \mathbb{Q}\left(\beta_{1}, \beta_{2}\right)$.
Homework \#9
due Friday, February 20
Ch. 6: 25, 29
Hint: problem 53 from Chapter 3 may be helpful.
Ch. 7: Do the following three part question.
Additional Problem \#1. Let $s(x)=x^{2}+3 x+2, t(x)=x^{2}+4 x+5$, and $p(x)=x+2$.
(a) Does there exist $q(x) \in \mathbb{Q}[x]$ such that $s(x)=q(x) p(x)$, i.e. is $s(x)$ divisible by $p(x)$? If so, what is $q(x)$? If not, why not?
(b) Does there exist $q(x) \in \mathbb{Q}[x]$ such that $t(x)=q(x) p(x)$, i.e. is $t(x)$ divisible by $p(x)$? If so, what is $q(x)$? If not, why not? Hint: not.
(c) Find $q(x), r(x) \in \mathbb{Q}[x]$ with $\operatorname{deg}(r(x))<\operatorname{deg}(p(x))$ such that $t(x)=q(x) p(x)+r(x)$.

Writing Assignments

On writing assignments, part of your grade will reflect the quality of your style. Style includes everything from the basic mechanics of writing (complete, grammatically correct sentences with capitalization and proper punctuation) to the conventions of writing mathematics developed in Linear Algebra.

Writing Assignment \#4

due Wednesday, February 18
Ch. 5: 12, 13
Ch. 6: 33
There is a typo in 33. The problem should read: ". . . then $\mathbb{Q}^{p(x)} \neq \mathbb{Q}\left(r_{1}, r_{2}\right)$."
Extra Credit: Let $\alpha=\sqrt{2}-i$. Give a description of $\mathbb{Q}(\alpha)$ analogous to $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$. Make sure to prove everything. Please do not use outside resources, e.g. no rhuben. Only correct, well-justified, and beautifully written proofs will receive points!

