Modern Algebra
 MATH 325W - Spring 2015

Monday: Chapter 10: Algebraic Elements
Wednesday: Chapter 10: Algebraic Elements
Week 8
Friday:
Chapter 11: Eisenstein

Homework

Homework \#13

Ch. 10: \# 14, 20, 39, 42
Note: important information for \#39 and \#42 can be found right above \#37.
Extra \#1: Let $p(x)=x^{3}-x+1 \in \mathbb{Z}_{3}[x]$, and let r be a root of $p(x)$.
(1) Prove that $p(x)$ is irreducible over \mathbb{Z}_{3}.
(2) Use Theorem 10.8 to describe $\mathbb{Z}_{3}(r)$.
(3) How many elements are in the field $\mathbb{Z}_{3}(r)$?

Homework \#14

due Friday, March 13
Ch. 11: \#5-10, 14

Writing Assignments

On writing assignments, part of your grade will reflect the quality of your style. Style includes everything from the basic mechanics of writing (complete, grammatically correct sentences with capitalization and proper punctuation) to the conventions of writing mathematics developed in Linear Algebra.

Writing Assignment \#7

due Wednesday, March 11
Ch. 9: \#25
Hint: modify the proof of 9.10. Let $I \subseteq \mathbb{Z}$ be an ideal. If $I=\{0\}$, then I is principal since in this case $I=(0)$. Now assume $I \neq\{0\}$. Let $S=\{a \mid a \in I$ and $a>0\}$. Then the WOP applies to S (you explain why!), so S has a minimal element d. Then...
Also: Turn in a rewrite for one previous Writing Assignment (if you want). Make it beautiful!

