03 - Vector Spaces

Definition: Vector Space

A real vector space (or a vector space over \mathbb{R}) is a set V with two operations \oplus and \odot and a distinguished element **0** such that the following axioms hold for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all $c, d \in \mathbb{R}$:

- (a) $[\oplus \text{ CLOSURE}] \mathbf{u} \oplus \mathbf{v} \in V$
 - (1) $[\oplus \text{ COMMUTATIVITY}] \mathbf{u} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$
 - (2) $[\oplus \text{ ASSOCIATIVITY}] \mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w}) = (\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}.$
 - (3) $[\oplus \text{ IDENTITY}] \mathbf{u} \oplus \mathbf{0} = \mathbf{u} = \mathbf{0} \oplus \mathbf{u}$
 - (4) $[\oplus \text{ INVERSES}]$ there is a $\mathbf{u}' \in V$ such that $\mathbf{u} \oplus \mathbf{u}' = \mathbf{0} = \mathbf{u}' \oplus \mathbf{u}$
 - \bullet we typically write $-\mathbf{u}$ for the element \mathbf{u}'
- (b) $[\odot \text{ closure}] \ c \odot \mathbf{u} \in V$
 - (5) [DISTRIBUTIVITY OF \odot OVER \oplus] $c \odot (\mathbf{u} \oplus \mathbf{v}) = (c \odot \mathbf{u}) \oplus (c \odot \mathbf{v})$
 - (6) [\odot COMPATIBILITY WITH +] $(c+d) \odot \mathbf{u} = (c \odot \mathbf{u}) \oplus (d \odot \mathbf{u})$
 - (7) [\odot COMPATIBILITY WITH \cdot] $(c \cdot d) \odot \mathbf{u} = c \odot (d \odot \mathbf{u})$
 - (8) [\odot compatibility with 1] $1 \odot \mathbf{u} = \mathbf{u}$

The elements of a vector space will be called **vectors**; the elements of \mathbb{R} will be called **scalars**. The operation \oplus is called **vector addition** and \odot is called **scalar multiplication**.

1. Let $V = \mathbb{R}^n$. Define \oplus to be usual addition of vectors and \odot to be usual scalar multiplication (as defined in Chapter 1). Explain why V is a vector space with respect to these operations.

2. Let $V = \mathbb{R}^2$. Define \oplus to be usual addition of vectors, and define \odot via $c \odot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ cy \end{bmatrix}$. Prove that V is **not** a vector space with respect to these operations.

Example

Each of the following is an example of a vector space.

- **1.** Fix $m, n \ge 1$. Let M_{mn} be the set of all $m \times n$ matrices with entries from \mathbb{R} . Define \oplus to be usual addition of matrices and \odot to be usual scalar multiplication.
- **2.** Fix $n \ge 0$. Let P_n be the set of all polynomials—with coefficients in \mathbb{R} —of degree at most n, together with the zero polynomial. Define \oplus to be usual addition of polynomials and \odot to be usual multiplication of a real number by a polynomial.
- **3.** Let *P* be the set of all polynomials—with coefficients in \mathbb{R} —of any degree, together with the zero polynomial. Define \oplus to be usual addition of polynomials and \odot to be usual multiplication of a real number by a polynomial.
- **3.** Let V be the set of *positive* real numbers. For $\mathbf{u}, \mathbf{v} \in V$ and $c \in \mathbb{R}$, define $\mathbf{u} \oplus \mathbf{v} = \mathbf{u} \cdot \mathbf{v}$ (so \oplus is multiplication) and $c \odot \mathbf{v} = \mathbf{v}^c$. Prove that V is a vector space with respect to these operations.

Theorem: General Properties of Vector Spaces

Let V be a vector space. Then the following hold for <u>all</u> $\mathbf{u} \in V$ and <u>all</u> $c \in \mathbb{R}$:

- (a) $0 \odot \mathbf{u} = \mathbf{0}$
- (b) $c \odot 0 = 0$
- (c) If $c \odot \mathbf{u} = \mathbf{0}$, then c = 0 or $\mathbf{u} = \mathbf{0}$
- (d) $(-1) \odot \mathbf{u} = -\mathbf{u}$

4. Prove Property (d) of the theorem using the definition of a vector space together with Property (a).