2. ABSTRACT GROUPS

“Abstraction is real, probably more real than nature.”
- Josef Albers

2.1. The definition.

DEeriniTION 2.1. Let G be a set equipped with functionsm : G X G - Gand(: G — G
as well as a distinguished element 1. The structure G = (G, m, 1, 1) is called a group if the
following hold for all x, y, z € G; we write xy in place of m(x, y) and x! in place of ¢(x).
1) (xy)z = x(yz)
2) xx T=x"lxy=1
B) xl=1x=x
We call x~! the inverse of x and 1 the identity or trivial element of G. We often simply
write G in place of G.

ProBLEM 2.2. Give examples of groups with the following properties by explicitly defining
m,t,and 1:
(1) a group with 4 elements,
(2) a group with 4 elements for which multiplication is truly different than the previous
example, and
(3) an infinite group

Tueorem 2.3. Let G be a group. If ¢, h € G, then (gh)™' = h=1g~1.

NotaTioN 2.4. Let G be a group. If g, h € G, then we call gh the product of ¢ and h. Also,
for n € N, g" denotes the product of g with itself n-times, and ¢~" denotes ( g‘l)n.

Facr 2.5 (cf. Theorem 1.4). Let G be a group. If ¢ € G and m, n € Z, then

(1) g7 =(g") ", and
(2) gmgn — gm+n.

DEFINITION 2.6. Let G be a group, and let ¢ € G. If ¢"" = 1 for some positive n € N, then
we define the order of g, denoted |g|, to be the smallest such n. Otherwise, we say that g
has infinite order and write |g| = co. The order of G is defined to be the cardinality of G.

Facr 2.7 (Division Algorithm). Let n be an integer and m a positive integer. There are
unique integers g (the quotient) and r (the remainder) for whichn = gm+rand 0 < r < m.

THEOREMX 2.8. Let G bea groupand n € Z. If g € G, then g" =1 if and only if | g| divides n.

DEerINITION 2.9. Let Gbea group. If g, h € G, then we say that g and h commuteif gh = hg.
More generally, g1, ..., g € G are said to commute if g;g; = gjg;forall1 <i,j <r.

THEOREM* 2.10. If ¢1, ..., g are commuting elements of a group, then the product g1 - - - g, has

order dividing lem(| g1/, ..., 1g+|).
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DEerinITION 2.11. We call a group G abelian (or commutative) if gh = hg forall g, h € G.

THEOREM* 2.12. If every nontrivial element of a group has order 2 (such a group is said to be of
exponent 2), then the group is abelian.

2.2. Subgroups.

DEeriniTION 2.13. Let G be a group. A subset H of G is called a subgroup of G, denoted
H < G, if it is closed under all (three) operations of G, i.e.

(1) the product of two elements of H is again in H,

(2) the inverse of each element of H is again in H, and

(3) the identity (of G) is in H.
A subgroup of G is proper if it is not equal to G. A subgroup of G is nontrivial if it has
more than 1 element.

THEOREMA 2.14. Let G bea group, and let ¢ € G. Theset {g*|k € Z} is a subgroup of G consisting
of exactly |g| elements (interpreted in the obvious way when |g| = o).

DEerINITION 2.15. Let G be a group, and let ¢ € G. The set (g) := {gklk € 7} is called the
(cyclic) subgroup generated by g. If G = (g), we say that g generates G and that G is cyclic.

ProsLEM 2.16. Find all subgroups of S3. Which are cyclic? Which are abelian?

ProsLEM 2.17. Find examples of each of the following in Sy:
(1) a proper nontrivial cyclic subgroup,
(2) a proper noncyclic abelian subgroup, and
(3) a proper nonabelian subgroup.

DEerINITION 2.18. Let n € N. Define Z/nZ to be the group ({0,1, ..., n -1}, +,, —4,0) where
e +, is addition modulo 7, and
e —, computes the negative an element modulo 7.

When the context is clear, we usually write + and — instead of +, and —,.

ReMARK 2.19. When a group is abelian, we usually use use additive notation and write
x + y in place of m(x, y), —x in place of ((x), and 0 instead of 1. With this notation, x"
becomes nx. Also, we will often consider the integers Z as a group with operations being
the usual addition + and usual negation —. The trivial element is 0.

THEOREM* 2.20. The groups Z/nZ and Z are cyclic.

ProsLeEm 2.21. Find all subgroups of Z/127Z and illustrate how they are contained in each
other.

ReMARK 2.22. It should be reasonably clear that every subgroup of an abelian group is
abelian, but what happens if we replace abelian by cyclic?
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THEOREM* 2.23. (Prove or Disprove) Every subgroup of a cyclic group is cyclic.

THEOREMX 2.24. Let G be a group. Prove that the intersection of any collection of subgroups of G
is also subgroup.

DEerINITION 2.25. Let G be a group, and let S C G. The subgroup generated by S, denoted
(S), is the intersection of all subgroups of G that contain S.

ReMARK 2.26. Note that every subgroup of G that contains S must also contain (S). Also,
when S consists of a single element, we now have two definitions for (S), see Defini-
tion 2.15, but it is not hard to prove that they agree.

ProBLEM 2.26.1. Let S be the set of all transpositions, i.e. 2-cycles, in S.
(1) Show that S4 = (S), i.e. that S4 is generated by the transpositions.
(2) Do you need all of the transpositions? That is, can you find a proper subset of S
that still generates S4?
(3) Is it possible for S4 to be generated by two elements (that are not necessarily trans-
positions)?

THEOREM* 2.27. If ¢ and h are commuting elements of a group and (g) N (h) = {1}, then the
product gh has order lem(|g|, |h]).

DEerINITION 2.28. Let G be a group. Define the center of G, denoted Z(G), to be the set
Z(G) = {h € Glhg=gh for every g € G}, and for each g € G, define the centralizer of g in
G tobe C;(g) :=1{h € Glhg = gh}.

THEOREM* 2.29. Let G be a group, and let g € G. Then Cg(g) and Z(G) are subgroups of G,
and Cg(g) contains both (g) and Z(G).

2.3. Cosets and normal subgroups.

DEeriniTION 2.30. Let G be a group and H a subgroup. For every ¢ € G, the set gH :=
{ghlh € H} is called a left coset of H in G, and Hg := {hg|h € H} is called a right coset
of H in G. The collection of all left cosets of H in G will be denoted G/H; where as, H\G
denotes the collection of all right cosets of H in G.

ProsLEM 2.31. Consider the subgroups H := {(12)) and N := ((123)) of Ss.
(1) Determine S3/H and H\Ss. Is S3/H = H\S3? Is |S3/H| = |H\S3|?
(2) Determine S3/N and N\S3. Is S3/N = N\S3? Is |S3/N| = |[N\S3|?

DEerINITION 2.32. A subgroup N of a group G is said to be normalif gN = Ng forall g € G.
TueoreM 2.33. Every subgroup of an abelian group is normal.

ProBLEM 2.34. If n is any natural number larger than 1, then nZ = {nm|m € Z}is a

subgroup of Z. Describe the left cosets (which are the same as the right cosets) of nZ in Z.
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THEOREM* 2.35. Let G be a group, H a subgroup, and g, g1, g2 € G. Then
(1) gH = (gh)H for every h € H, and
(2) §1H = g:H ifand only if g;'¢1 € H.

DEeFINITION 2.36. A partition of a set X is a collection P of nonempty subsets of X such
that every element of X is in exactly one element of P.

Remark 2.37. If X = {a,b,c,d,e, f}, then {{a,c},{e}, {b,d, f}} is a partition of X, but
{{a,c}, {e}, {b, f}} and {{a,c,d}, {e},{b,d, f}} are not. A partition {A1, Az, A3, A4, As} of
a set X can be visualized as follows.

THEOREM* 2.38. If H is a subgroup of G, then the set of left cosets G/H forms a partition of G.

REMARK 2.39. It is also true that the set of right cosets H\G forms a partition of G, though
quite possibly a different one than G/H.

Facr 2.40. By definition, two sets A and B have the same cardinality, i.e. “size”, if there is
a bijection between A and B.

THeOREMX 2.41 (Lagrange’s Theorem). Let G be a finite group and H a subgroup. Then every
left coset of H in G has the same cardinality, and consequently, |G| = |G/H| - |H|.

THEOREMX 2.42. The order of each element of a finite group divides the order of the group.
THEOREMX 2.43. Every group of prime order is cyclic.

ReMARK 2.44. Lagrange’s Theorem tells us that the partition of a group G determined by
the left cosets of a subgroup H looks as follows.

G

Additionally, it should be rather clear that Lagrange’s Theorem also holds for right cosets.
Thus, all left and right cosets of H in G have the same cardinality and |G/H| = |[H\G]|.
9



DerINITION 2.45. Let H a subgroup of a group G. Define the index of H in G, denoted
|G : H|,tobe |G : H| := |G/H| = |[H\G]|.

THEOREM* 2.46. Every subgroup of index 2 in a group must be normal.

THeOREM 2.47. Let N be a normal subgroup of G. If g1, g2, a1, a2 € G are such that g1N = a1N
and goN = aN, then

(1) (8182)N = (a1a2)N, and
(2) g;'N =a;'N.

ReMARK 2.48. The previous theorem is saying that for all a1 € g1N and all a, € ¢;N the

product a1a; always lies in the coset (g182)N (see the picture below) and the inverse a; 1

always lies in the coset ¢g7'N. Thus, when N is normal, this allows us to give the coset
space G/N the structure of a group.

G

(g182)N 8182 e

2N 820
s1N 1@
N

DEerINITION 2.49 (Quotient groups). Let N be a normal subgroup of G. Then the coset
space G/N has the structure of a group where

(1) (aN) - (bN) = (ab)N,

2) (aN)™! = (@@ "N, and

(3) N =1N is the identity.

ReMARK 2.50. If G is an group with normal subgroup N, then many properties of G trans-
ter to the group G/N. For example, if G is abelian, then G/N is also abelian. Additionally,
properties for N and G/N can sometimes be combined to deduce properties of G, but this
is usually a bit more complicated.

TaeOREMX 2.51. If G is a cyclic group and N is a subgroup, then both N and G/N are cyclic.

ProBLEM 2.52. Find a group G with a normal subgroup N such that both N and G/N are
cyclic but G is not even abelian.

DEerINITION 2.53. A subgroup H of a group G is called central it H < Z(G). Note that
central subgroups are necessarily normal.
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THEOREM* 2.54. If N is a central subgroup of G and G/N is cyclic, then G is abelian.

DEerINITION 2.55. Let p be a prime. A group is a p-group if the order of every element is a
power of p; that is, for every element g, there is some k € N such that |g| = p*.

RemMARk 2.56. Note that Dy is a 2-group, and by Lagrange’s Theorem, every group of
prime-power order must be a p-group. Can you think of an infinite p-group?

THEOREMX 2.57. Let p be a prime, and let N be a normal subgroup of G. If N and G/N are
p-groups, then G is as well.

RemMARK 2.58. Let G be a finite group. We know, by Theorem 2.42, that the order of every
element of G divides |G|. Now, suppose that some prime p divides |G|; does this imply
that G has an element of order p? The next few theorems start to explore this question.

DerINITION 2.59. Let n € N. A group G is said to be n-divisible if for every g € G there is
some x € G such that ¢ = x", i.e. the function G — G : x  x" is surjective. In additive
notation, the condition ¢ = x" becomes g = nx, justifying the name n-divisible.

THEOREMX 2.60. Let G be a finite abelian group, and let p be a prime. If G has no elements of
order p, then G is p-divisible.

THEOREM* 2.61. Let G be a finite group and p be a prime. If N is a central subgroup of G and
G/N has an element of order p, then G has an element of order p. [Hint: either N has an element
of order p or it does not. In the latter case, try to use the previous theorem.]

THEOREM* 2.62. Let G be a finite abelian group. If p is a prime dividing |G|, then G has an element
of order p. [Hint: this theorem is hard. First prove it assuming G is cyclic. Now, assume
that the theorem is false, and consider a counterexample to the theorem for which |G| is
as small as possible. To find a contradiction, show that G must have a proper nontrivial
subgroup N, and then study N and G/N ]

RemMARK 2.63. The previous three theorems raise many questions. Is it true that every fi-
nite group without elements of order p is p-divisible? What about infinite groups? Is it
necessary that N be central in the statement of Theorem 2.61? If p is a prime dividing the
order of an arbitrary finite group, must the group have an element of order p?

ProBLEM 2.63.1. Generalize Theorem 2.62 in some way.
2.4. Morphisms.

DEerINITION 2.64. Let G and H be groups. A function ¢ : G — H is called a homomorphism
if for all g1,82 € G, (1) p(8182) = ¥(81)P(82), (2) (g7 = ¢(g1)™!, and (3) (1) = 1. A
bijective homomorphism from G to H is called an isomorphism, and in this case, G and
H are said to be isomorphic, denoted G = H. An isomorphism from G to G is called an
automorphism of G.
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ReMARK 2.65. In the equation ¢(g182) = @(g1)¢(g2), the product g1g> is computed ac-
cording to the definition of “multiplication” in G; where as, the product ¢(g1)®(g2) is
computed according to the definition of “multiplication” in H. Similar statements holds
for the equations (p(gl‘l) =@(g1) tand p(1) = 1.

THEOREM* 2.65.1. A function ¢ : G — H between two groups is a homomorphism if and only if
¢(8182) = P(81)¢(82) for all g1, &2 € G.

THEOREMX 2.66. A group G is abelian if and only if the inversion map G — G : x — x Lisan

automorphism.

REMARK 2.67. Recall that any bijection f from a set X to a set Y has an inverse defined by

f_l Of=idx 611’1(21’]“Of_1 =idy.
THeOREM 2.68. The inverse of an isomorphism between two groups is also an isomorphism.

REMARK 2.69. A homomorphism from G to H translates the group operations of G to those
of H, and this transfers various properties of G to H. This is especially true when G = H
as, in this case, G and H are for all intents and purposes the same group, except that the
elements have different names.

THEOREMX 2.70. Let ¢ : G — H be a surjective homomorphism of groups.

(1) If G is cyclic, then H is cyclic.
(2) If G is abelian, then H is abelian.

Remark 2.71. If ¢ : G — H is an isomorphism of groups, the previous two theorems can
be combined to see that G is cyclic if and only if H is cyclic and that G is abelian if and
only if H is abelian.

THEOREM* 2.72. Let ¢ : G — H be a homomorphism of groups. If ¢ € G has finite order, then
lp(g)| divides |g|, and if, additionally, ¢ is an isomorphism, then |p(g)| = |g|.

TaeOREMX 2.73. Every two infinite cyclic groups are isomorphic, and two finite cyclic groups are
isomorphic if and only if they have the same cardinality.

ProBLEM 2.74. Show that Z contains (many) proper subgroups that are isomorphic Z.

NortatioN 2.75. There are two groups attached to every field F: the elements of F under
addition, denoted F*, and the nonzero elements of F under multiplication, denoted F*.

ProsLEM 2.76. Show that R* # R*. However, if H is the subgroup of R* consisting of the
positive real numbers, show that R* = H.

ProBLEM 2.77. Let F be any field. Find two subgroups of GL,(F) isomorphic to F* and F*.
[Hint: you can restrict your attention to upper triangular matrices.]
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DEerINITION 2.78. The quaternion group is the group Qg := {{il, +i,+j,+k}, -, 71, 1} where
o« (-1)(-1)=1,
o o(-1)=(-1)g=—gforall g € Qs,
e i?=j2=k>=-1,and
o ij=k.
Note that these axioms imply that 1 is the identity and that g™! = —¢ for all ¢ € Qg — {+1}.

ProsLEM 2.79. Show that Qg is a nonabelian group of order 8 that is not isomorphic to Dj.

DEeriniTION 2.80. Let G and H be groups, and let ¢ : G — H be a homomorphism. Define
the kernel of ¢ to be ker ¢ := {g € G|p(g) = 1}, and the image of ¢ to be ¢(G) = {h €
Hl|h = ¢(g) for some g € G}.

THEOREM* 2.81. If ¢ : G — H is a homomorphism of groups, then the kernel of ¢ is a normal
subgroup of G, and the image of ¢ is a subgroup of H.

RemMARKk 2.82. The previous theorem states that kernels of homomorphisms are normal
subgroups, but the converse is also true: every normal subgroup is the kernel of some
homomorphism. Indeed, if N < G, then the map ¢ : G — G/N : ¢ = ¢N is a (surjective)
homomorphism with kernel equal to N.

THEOREM* 2.83. A homomorphism of groups is injective if and only if the kernel is trivial.

THeEOREM 2.84 (First Isomorphism Theorem). If ¢ : G — H is a surjective homomorphism of
groups, then G/ ker ¢ = H. [Hint: Use ¢ to define a related function from G/ ker ¢ to H.]

ReMARK 2.85. If ¢ : G — H is a homomorphism of groups, then ¢ : G — ¢(G) is a surjec-
tive homomorphism, so G/ ker ¢ = ¢(G). In words, “G modulo the kernel is isomorphic
to the image.” Setting K := ker ¢, the picture is roughly as follows.

H
c ¢(G)
gzK --------------- ] > e 9(82)
-g-lK -------------- ] > e o(g1)
---;( """""""""""" ] m 4 IR

ProBLEM 2.86. Let F be any field. Show that SL,,(F) is normal in GL,(F) by showing that
SL,(F) is the kernel of a homomorphism from GL,(F) to another group. Use this homo-
morphism to describe the quotient group GL,,(F)/SL, (F).
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