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1. E�������
“A good stock of examples, as large as possible, is indispensable for a thorough understanding of any

concept, and when I want to learn something new, I make it my �rst job to build one.”
- Paul Halmos

1.1. Symmetric groups.

D��������� 1.1. Let X be a set. A permutation of X is a bijection from X to X. The identity

permutation is the permutation idX : X ! X de�ned by idX(x) = x for all x 2 X.

D��������� 1.2. Let X be any set. The symmetric group on X, denoted Sym(X), is the set
of all permutations of X. We denote by Sn the symmetric group on X = {1, 2, . . . , n}.

N������� 1.3. If a , b 2 Sym(X), then ab denotes the (function) composition of a and b,
i.e, ab(x) = a(b(x)) for every x 2 X. Also, for n 2 N, an denotes the composition of a with
itself n-times, and a�n denotes

⇣
a�1

⌘n
, i.e. the composition of a�1 with itself n-times.

T������ 1.4. If � 2 Sym(X) and m , n 2 Z, then
(1) ��m = (�m)�1, and
(2) �m�n = �m+n .

P������ 1.5 (Diagrammatic representation of Sn).
(1) Which element of S4 does the following diagram seem to represent?

1

1

2

2

3

3

4

4

(2) What is the diagram for the inverse of the previous element.
(3) Formulate a rule in this notation for �nding the inverse of an element of S4.
(4) What is the diagram for the identity.
(5) Consider �, ⌧ 2 S4 whose diagrams are given below. Determine the diagrams for
�⌧ and ⌧�.

� =
1

1

2

2

3

3

4

4
⌧ =

1

1

2

2

3

3

4

4

(6) Formulate a rule in this notation for �nding the composition of two elements.
1



P������ 1.6 (Cauchy’s two-line notion for Sn).
(1) Which element of S4 does the following two-line matrix seem to represent?

 
1 2 3 4
1 3 4 2

!

Note: there is an obvious way to compress this to a one-line notation.
(2) What is the two-line notation for the inverse of the previous element.
(3) Formulate a rule in this notation for �nding the inverse of an element of S4.
(4) What is the two-line notation for the identity.
(5) Determine the two-line notations for � and ⌧ from Problem 1.5, and do the same

for �⌧ and ⌧�.
(6) Formulate a rule in this notation for �nding the composition of two elements.

P������ 1.7 (Disjoint cycle notation for Sn).
(1) Which element of S4 does the following notation seem to represent?

(1) (3 4 2)
Note: in this notation, we will omit “cycles” of length 1 and simply write (3 4 2).

(2) Using disjoint cycle notation, how many di�erent ways are there to represent the
previous element?

(3) Write the inverse of the previous element in disjoint cycle notation.
(4) Formulate a rule in this notation for �nding the inverse of an element of S4.
(5) Determine disjoint cycle notation for � and ⌧ from Problem 1.5, and do the same

for �⌧ and ⌧�.
(6) Formulate a rule in this notation for �nding the composition of two elements.

D��������� 1.8. The list, in increasing order and with repetitions, of the lengths of the
“cycles” in the disjoint cycle notation for an element of a symmetric group is called the
cycle type of the element.

R����� 1.9. In the previous problem, � has cycle type (1, 3), which is abbreviated to
(3); we say that � is a 3-cycle. The permutation ⌧ has cycle type (2, 2). The cycle type
of (3 4 2)(1 7)(6 8) 2 S10 is (2, 2, 3).

P������ 1.10.
(1) Find a � 2 S4 such that � is not the identity but �2 is the identity. Such an element

is said to have order 2.
(2) How many elements of S4 have order 2? What are the possible cycle types of such

an element?
(3) Find an element of S4 of order 3.
(4) How many elements of S4 have order 3? What are the possible cycle types of such

an element?
(5) What are the possible cycle types for an element of S4?

D��������� 1.11. Let � 2 Sym(X). If �n = idX for some positive n 2 N, then we de�ne the
order of � to be the smallest such n. Otherwise, we say that � has in�nite order.
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P������ 1.12. Let � 2 Sn (with n 2 N), and �x a prime p.
(1) Suppose that the order of � is pk for some natural number k. Describe the possible

cycle types for �.
(2) Suppose that the cycle type of � only involves powers of p, e.g. (p , p2, p2, p4). De-

termine the order of �.
(3) Suppose that the cycle type of � is (2, 3). Determine the order of �.

N������� 1.13. If X is a set, then |X | denotes the cardinality of X, i.e. the “number” of
elements in X. If � 2 Sym(X), then |� | denotes the order of �.

T������ 1.14. If n := |X | is �nite, then | Sym(X)| = (in terms of n) .

?T������ 1.15. If n := |X | is �nite, then Sym(X) has (in terms of n) elements of order 2.

?T������ 1.16. Assume that X is �nite and � 2 Sym(X). If � has cycle type (m1, . . . ,mr), then
|� | = (in terms of m1, . . . ,mr) .

?T������ 1.17. If X is �nite and � 2 Sym(X), then |� | divides | Sym(X)|, or in words, the order
of each element divides the order of the group.

1.2. Automorphism groups of graphs.

D��������� 1.18. A pair G = (V, E), where V is a set of elements called vertices and E ✓
V ⇥ V , is called a directed graph (or digraph), and the elements of E are directed edges. If
E is symmetric, then G is simply called a graph, and for every (v , w) 2 E, the unordered
pair {v , w} is an edge.

D��������� 1.19. An automorphism of a graph (or digraph) G = (V, E) is a permutation
� 2 Sym(V) such that (x , y) 2 E if and only if (�(x), �(y)) 2 E. The automorphism group

of G is the set of all automorphisms of G, denoted Aut(G).

R����� 1.20. If G is a graph with vertex set V , then Aut(G) ✓ Sym(V). Of course, every
element of Aut(G) also permutes the edges of G, but it is possible for nontrivial elements
of Aut(G) to �x every edge (but not every directed edge).

P������ 1.21. Consider the graph D4 = (V, E) with vertex set V := {1, 2, 3, 4} and (sym-
metric) edge relation E := {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 1), (1, 4)}.

1

2 3

4

(1) Write down all elements of Aut(D4) in disjoint cycle notation.
(2) Determine how many elements of Aut(D4) have order 2.
(3) Determine how many elements of Aut(D4) have order 3.
(4) Determine how many elements of Aut(D4) have order 4.
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(5) True or False (and explain): there is an a 2 Aut(D4) such that for every b 2 Aut(D4)
there exists a k 2 N for which b = ak .

(6) True or False (and explain): for every a , b 2 Aut(D4), ab = ba.

P������ 1.22. Repeat the previous problem for the directed graph C4 = (V, E) with vertex
set V := {1, 2, 3, 4} and edge relation E := {(1, 2), (2, 3), (3, 4), (4, 1)}.

1

2 3

4

D��������� 1.23. Generalizing the previous two problems, we get the graphs Dn and Cn
below.

43

2

1 n

Dn

43

2

1 n

Cn

(1) The automorphism group of Dn , denoted Dn (or often D2n), is the dihedral group

of order 2n.
(2) The automorphism group of Cn , denoted Cn , is the cyclic group of order n.

D��������� 1.24. Let G ✓ Sym(X).
(1) We say that G acts transitively on X if for every x , y 2 X there is a g 2 G such that

g(x) = y.
(2) We say that G acts freely on X if for every x 2 X and every g 2 G we have that

g(x) = x only if g = id, i.e. the only element of G that �xes a vertex is the identity.

T������ 1.25. The group Dn acts transitively, but not freely, on the vertices of Dn .

?T������ 1.26. The group Cn acts transitively and freely on the vertices of Cn .

P������ 1.27. Clarify and prove the following statement: if the automorphism group of a
graph acts freely on the set of vertices, then each element of the group is determined by its action on
any one individual vertex.

D��������� 1.28. If G is a (symmetric or automorphism) group and g 2 G, we say that g
generates G if for every h 2 G there is some k 2 Z such that h = gk . If G is generated by
one of its elements, we say that the group G is cyclic.

T������ 1.29. For every positive integer n, Cn is cyclic.

P������ 1.30. Make and provide evidence for (or prove) a conjecture as to which elements
of Cn can generate Cn .

D��������� 1.31. We de�ne the (in�nite) graphs D1 and C1 as
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�2 �1 0 1 2D1
�2 �1 0 1 2C1

(1) The automorphism group of D1, denoted D1, is the in�nite dihedral group.
(2) The automorphism group of C1, denoted C1, is the in�nite cyclic group.

?T������ 1.32. The group C1 is cyclic.

P������ 1.33. Find all elements of C1 that generate it.

D��������� 1.34. If G is a (symmetric or automorphism) group, we say that G is abelian

(or commutative) if gh = h g for every g , h 2 G.

?T������ 1.35. Every cyclic group is abelian.

T������ 1.36. If n � 3 or if n = 1, then Dn is not abelian.

?T������ 1.37. If n 2 N and G is (description of a graph) , then Aut(G) = Sn .

1.3. Linear groups.

D��������� 1.38. Let F be a �eld, and set Mn(F) to be the collection of n ⇥ n matrices with
entries from F. De�ne

(1) the general linear group to be GLn(F) := {A 2 Mn(F)| det A , 0}, and
(2) the special linear group to be SLn(F) := {A 2 Mn(F)| det A = 1}.

R����� 1.39. Given any F �eld and any positive integer n, we have that
SLn(F) ✓ GLn(F) ✓ Sym(V),

where V is the vector space Fn . In particular, we can talk about orders of elements as well
as the properties of being transitive, free, cyclic or abelian for these groups.

N������� 1.40. If A and B are sets, A � B denotes the set of elements in A but not in B.
The notation A \ B is also sometimes used.

T������ 1.41. The group GLn(C) acts transitively on the set X := Cn � {0}.

?T������ 1.42. The group GLn(C) acts freely on the set X := Cn � {0} if and only if n =
(list of numbers) .

?T������ 1.43. The group GLn(C) is abelian if and only if n = (list of numbers) .

?T������ 1.44. The group SL2(C) has exactly one element of order 2.
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