
3. G���� �������
“Groups, as men, will be known by their actions.”

- Guillermo Moreno

3.1. The de�nition.

D��������� 3.1. An action of a group G on a set X is a function from ↵ : G ⇥ X ! X such
that the following hold for all g , h 2 G and all x 2 X; we write g · x in place of ↵(g , x).

(1) g · (h · x) = (gh) · x, and
(2) 1 · x = x.

P������ 3.2. Suppose that G acts on X. Fix g 2 G, and consider the function �g : X ! X
de�ned by �g(x) = g · x.

(1) Show that �g is a bijection, i.e. show that �g 2 Sym(X). [Hint: make use of the fact
that g has an inverse.]

(2) Show that the function � : G ! Sym(X) : g 7! �g is a homomorphism. [Hint: in
order to show that �gh = �g � �h , show that �gh(x) = (�g � �h)(x) for all x 2 X.]

R����� 3.3. In the previous problem, the function � is called the associated permutation

representation of G since it gives a way to view each element of G as a permutation of X
in a way “compatible” with the operations of G.

D��������� 3.4. Assume that G acts on X.
(1) The action is transitive if for every x , y 2 X there is a g 2 G such that g · x = y.
(2) For g 2 G and x 2 X, we say that g �xes x if g · x = x.
(3) For x 2 X, the stabilizer of x, denoted Gx , is set of all g 2 G that �x x.
(4) For S ✓ X, the stabilizer of S, denoted GS, is set of all g 2 G that �x every x 2 S.
(5) The kernel of the action is the subset of G that �xes every x 2 X, i.e. GX .
(6) The action is said to be faithful if the kernel is trivial.

R����� 3.5. Observe that the kernel of an action corresponds with the kernel of the as-
sociated permutation representation, so an action is faithful if and only if the associated
permutation representation is injective.

T������? 3.6. An action of a group G on X is transitive if there exists some x 2 X such that for
all y 2 X there is a g 2 G for which g · x = y.

P������ 3.7. Recall that D6 is the automorphism group of the squareD6. Let X be the set
of (three) diagonal edges shown below.
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Note that for every diagonal edge {u , v} and every ' 2 D6, the edge {'(u), '(v)} is again
a diagonal edge. Thus, we have an action of D6 on X given by ' · {u , v} = {'(u), '(v)}.
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(1) Is the action transitive?
(2) Let E be the edge E := {1, 4}. Determine the stabilizer GE.
(3) Find a relationship between |G |, |X |, and |GE |.
(4) Determine the kernel of the action. Is the action faithful?
(5) What is the image of the associated permutation representation?

P������ 3.8. Repeat the previous problem for C6. Let X be the set of (three) diagonal
edges shown below.
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As before, we have an action of C6 on X given by ' · {u , v} = {'(u), '(v)}.
(1) Is the action transitive?
(2) Let E be the edge E := {1, 4}. Determine the stabilizer GE.
(3) Find a relationship between |G |, |X |, and |GE |.
(4) Determine the kernel of the action. Is the action faithful?
(5) What is the image of the associated permutation representation?

3.2. Action by left multiplication.

P������ 3.9 (Action by left multiplication). Let G be a group.
(1) Show that g · h = gh de�nes an action of G on G; the associate representation is

called called the left regular representation. Is the action transitive? For h 2 G,
determine the stabilizer of h. Is this action faithful?

(2) Let H be a subgroup of G. Show that g · aH = (ga)H for all g , a 2 G de�nes an
action of G on the coset space G/H. Is the action transitive? Show that the stabilizer
of aH is aHa�1. Give an example of a group G and a proper nontrivial subgroup
H for which this action is not faithful.

T������? 3.10. If G acts on X and S ✓ X, then GS is a subgroup of G, and the kernel of the
action is a normal subgroup.

D��������� 3.11. A group is simple if it has no proper nontrivial normal subgroups.

R����� 3.12. Whenever a group G has a proper nontrivial normal subgroup N , we can
break G into two “simpler” pieces: N and G/N . The simple groups are the groups that
can not be broken down this way and can be thought of as the “basic” building blocks.

T������? 3.13. If G is an in�nite group with a proper subgroup H of �nite index, then G is not

simple. [Hint: consider the kernel of the action of G on G/H by left multiplication. The
First Isomorphism Theorem, i.e. Theorem 2.84 and Remark 2.85, may also be helpful.]

T������?3.14. If G is an �nite group with a proper subgroup H for which |G | has a prime divisor
larger than the index of H, then G is not simple. [Hint: same hint as the previous problem.]
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3.3. Action by conjugation.

N������� 3.15. Let G be a group. For g 2 G, the function �g : G ! G de�ned by �g(h) =
gh g�1 is called conjugation by g.

T������? 3.16. If G is a group and g 2 G, then �g is an automorphism of G. In particular,
(1) if h 2 G, then |h | = |gh g�1 |, and
(2) if H is a subgroup of G, then gH g�1 is a subgroup of G with H � gH g�1.

T������? 3.17. Let �, ⌧ 2 Sn . If the disjoint cycle decomposition of � is
⇣

a1 a2 . . . ak1

⌘ ⇣

b1 b2 . . . bk2

⌘

· · · ,
then the disjoint cycle decomposition of ⌧�⌧�1 is

⇣

⌧(a1) ⌧(a2) . . . ⌧(ak1)
⌘ ⇣

⌧(b1) ⌧(b2) . . . ⌧(bk2)
⌘

· · · .
P������ 3.18 (Action by conjugation). Let G be a group.

(1) Show that g · h = gh g�1 de�nes an action of G on G. Show that the action is not
transitive unless |G | = 1. For h 2 G, show that the stabilizer of h is equal to CG(h).
What is the kernel of the action?

(2) Show that g · H = gH g�1 de�nes an action of G on the set of all subgroups of G.
The stabilizer (with respect to this action) of a subgroup H is called the normalizer

of H in G and is denoted NG(H).

T������? 3.19. If H is a subgroup of a group G, then H is a normal subgroup of NG(H).

D��������� 3.19.1. If A and B are subsets of a group G, we de�ne AB := {ab |a 2 A, b 2 B}.
T������? 3.19.2. If H is a subgroup of a group G and K is a subgroup of NG(H), then KH is a
subgroup of NG(H).

D��������� 3.20. Let G be a group acting on a set X. If x 2 X, then the subset of X given
by Gx := {g · x |g 2 G} is called the orbit of x (under G).

T������? 3.21. If G is a group acting on a set X, then the set of orbits forms a partition of X.

D��������� 3.22. When G acts on itself (or on its subgroups) by conjugation, the orbits
are called conjugacy classes (or conjugacy classes of subgroups) and two elements in the
same conjugacy class are said to be conjugate.

P������ 3.23. Determine the conjugacy classes of S3. Determine the conjugacy classes of
subgroups of S3.

P������ 3.24. Determine the conjugacy classes of D6.

T������? 3.25. Two elements of Sn are conjugate if and only if they have the same cycle type.

T������? 3.26. If n � 3, then Z(Sn) = {1}.
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3.4. The Orbit-stabilizer Theorem.

R����� 3.27. Suppose that G acts on X. Observe that, for any orbit O, the action of G on
X restricts to an action of G on O, and this latter action is now transitive. In this way, many
questions about group actions can be reduced to questions about transitive group actions.

T������? 3.28 (Orbit-stabilizer Theorem). Let G be a group acting on a set X. Then for every
x 2 X, |Gx | = |G : Gx |. [Hint: construct a bijection from G/Gx to Gx.]

N������� 3.29. For a group G acting on a set X, we de�ne Fix(G) to be the set of all x 2 X
such that x �xed by every element of G, i.e. Fix(G) is the set of �xed points of G. The
elements of Fix(G) represent the orbits of G of size 1.

T������? 3.30. Let G be a �nite group acting on a �nite set X. Let O1, . . . , On be the orbits of
G not contained in Fix(G), if any, and let x1, . . . xn 2 X be such that xi 2 Oi . Then

|X | = | Fix(G)| +
n
X

i=1
|G : Gxi |.

[Hint: recall that the orbits of G partition X.]

T������? 3.31. Let P be a group of order pk for some prime p. If P acts on a �nite set X, then
| Fix(P)| ⌘ |X | modulo p.

T������? 3.32. If P is a group of order pk for some prime p, then Z(P) is nontrivial. [Hint: let
P act on itself by conjugation.]

T������? 3.33. If P is group of order p2 for some prime p, then P is abelian.

P������ 3.34 (The Class Equation). Let G be a �nite group. LetC1, . . . , Cn be the conjugacy
classes of G not contained in Z(G), if any, and let x1, . . . xn 2 G be such that xi 2 Ci . Explain
how Theorem 3.30 can be used to quickly deduce that

|G | = |Z(G)| +
n
X

i=1
|G : CG(xi)|.

T������? 3.35. Let G be a �nite group. If p is a prime dividing |G |, then p divides |CG(g)| for
some nontrivial g 2 G. [Hint: class equation.]

T������? 3.36 (Cauchy’s Theorem). Let G be a �nite group. If p is a prime dividing |G |, then
G has an element of order p. [Hint: consider a minimal counterexample, and �rst show that
it must have a nontrivial center.]

P������ 3.37. We should always be asking if we can generalize things. Make at least two
conjectures related to generalizing (or not being able to generalize) Cauchy’s Theorem.

T������? 3.38. Let p be a prime. If G is a �nite group, then G is a p-group (see De�nition 2.55)
if an only if |G | = pk for some k 2 N.
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3.5. Sylow’s Theorems.

D��������� 3.39. Let p be a prime. A subgroup P of G is called a Sylow p-subgroup if P is
a p-group and is not properly contained in another p-subgroup of G, i.e. P is a maximal
p-subgroup of G. Let Sylp(G) be the set of Sylow p-subgroups of G.

R����� 3.40. If G is a �nite group of order pk m with p prime and p not dividing m, then
a Sylow p-subgroup of G has order at most pk , by Theorem 3.38.

P������ 3.41. Find a Sylow 5-subgroup of S5.

P������ 3.42. Find a Sylow 2-subgroup of S4. [Hint: the maximum possible cardinality is 8.
Do you know of a group with 8 elements that acts on a set of size 4?]

T������? 3.43. Let p be a prime. If P 2 Sylp(G), then gP g�1 2 Sylp(G) for all g 2 G, so G
acts on Sylp(G) by conjugation.

T������? 3.44. Let p be a prime. If P is a p-subgroup of a group G and Q is a p-subgroup of
NG(P), then QP is a p-subgroup of NG(P). [Hint: �rst show that QP/P is a p-group.]

T������? 3.45. Let p be a prime, and let P be a Sylow p-subgroup of a group G. If P is normal in
G, then P is the only Sylow p-subgroup of G. Thus, even when P is not normal in G, P is always
the unique Sylow p-subgroup of NG(P).

T������? 3.46 (Sylow’s Thereom - part 1). If G is a �nite group and p is a prime dividing |G |,
then G acts transitively by conjugation on Sylp(G), and further, | Sylp(G)| ⌘ 1 modulo p.
[Hint: let O be some orbit of G on Sylp(G). The goal is to show that O = Sylp(G) and that
|O| ⌘ 1 mod p. Let P 2 Sylp(G) be arbitrary, and consider how P acts onO (by conjugation).

(1) Show that if P 2 O, then P �xes, i.e. normalizes, only P. Conclude that |O| ⌘ 1
modulo p.

(2) Show that if P < O, then P �xes nothing in O. Conclude from this that |O| ⌘ 0
modulo p.

The previous theorem and Theorem 3.31 are very relevant.]

T������? 3.47 (Sylow’s Thereom - part 2). If G is a �nite group and |G | = mpk with p prime
and p not dividing m, then |P | = pk for every P 2 Sylp(G).
[Hint: use part 1 of Sylow’s Theorem and the Orbit-Stabilizer Theorem to show |NG(P)| =
m0pk for some m0. Now, towards a contradiction, assume that |P | = p` with ` < k, and
consider the quotient group NG(P)/P. Show that NG(P)/P must have an element of order
p and use this �nd a contradiction.]

R����� 3.48. Since all Sylow p-subgroups of a �nite group are conjugate, a �nite group
has a normal Sylow p-subgroup if and only if it has a unique one. Thus, the condition
“| Sylp(G)| ⌘ 1 modulo p” can be helpful in determining if a group has a normal Sylow
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subgroup or not. And one should always remember that | Sylp(G)| = |G : NG(P)| by the
Orbit-Stabilizer Theorem, so in particular, | Sylp(G)| is always coprime to p.

T������ 3.49. If G is a group of order mq where q is prime and m < q, then G has a normal
Sylow q-subgroup.

T������ 3.50. If G is a group of order pqr where p, q, and r are prime with p < q < r, then
some Sylow subgroup of G is normal. [Hint: the following counting technique often works
well when the largest prime divisors of |G | only occur to the �rst power (make sure you
see when you use this). The rough idea is that if no Sylow subgroup of G is normal, then
G will have too many Sylow subgroups and, in turn, too many elements. Assume the
theorem is false. First count the number of Sylow r-subgroups, and use this to count the
number of elements of G of order r. Now estimate (it will be hard to precisely count) the
number of Sylow q-subgroups, and use this to estimate the number of elements of G of
order q. Finally, compare the sum of these with the order of G.]

P������ 3.51 (Just for fun). Prove that every group of order 36 has a normal Sylow sub-
group. [Hint: I think this problem is hard.]

T�� E��
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