THEORY OF GROUPS

NOTES FOR THE SENIOR SEMINAR IN ALGEBRA HAMILTON COLLEGE, FALL 2015.

1. Abstract groups

"Abstraction is real, probably more real than nature."

- Josef Albers

1.1. The definition.

Definition 1.1. Let G be a set with a binary operation $*$. The structure $\mathbb{G}=(G, *)$ is called a group if the following axioms hold:
(1) for all $x, y, z \in G$, we have $(x * y) * z=x *(y * z)$,
(2) there exists an element $e \in G$ such that for all $x \in G, x * e=x=e * x$, and
(3) for all $x \in G$, there exists a w such that $x * w=e=w * x$.

We often write $x y$ in place of $x * y$.
Theorem 1.2. Let G be a group. If $e_{1}, e_{2} \in G$ and for all $x \in G, x e_{1}=x=e_{1} x$ and $x e_{2}=x=e_{2} x$, then $e_{1}=e_{2}$. In other words, G has a unique "identity" element.

Notation 1.3. The previous theorem states that every group has a unique element e satisfying axiom (2) from Definition 1.1. This element will be called the identity or trivial element of the group. For groups whose binary operation is denote by $*$ or \cdot, the default symbol for the identity (in these notes) will be 1 . However, if the binary operation is denote by + , the default symbol for the identity will be 0 .

Theorem 1.4. Let G be a group, and let $x \in G$. If $w_{1}, w_{2} \in G$ with $x w_{1}=1=w_{1} x$ and $x w_{2}=1=w_{2} x$, then $w_{1}=w_{2}$. In other words, every element of G has a unique "inverse."

Notation 1.5. Theorem 1.4 states that for every element x of a group there is a unique element w satisfying axiom (3) from Definition 1.1 This element will be called the inverse of x. For groups whose binary operation is denote by $*$ or \cdot, the default notation for the inverse of x will be x^{-1}; however, if the binary operation is denote by + , the inverse of x will be denoted by $-x$.

Рroblem 1.6. Give examples of groups with the following properties by explicitly defining the binary operation and noting the identity and inverses:
(1) a group with 4 elements,
(2) a group with 4 elements for which multiplication is truly different than the previous example, and
(3) an infinite group.

1.2. Basic arithmetic.

Notation 1.7. Let G be a group. If $g, h \in G$, then we call $g h$ the product of g and h. Also, for $n \in \mathbb{N}, g^{n}$ denotes the product of g with itself n-times, and g^{-n} denotes $\left(g^{-1}\right)^{n}$.

Theorem 1.8. Let G be a group. If $g \in G$ and $m, n \in \mathbb{Z}$, then
(1) $1^{n}=1$,
(2) $g^{-n}=\left(g^{n}\right)^{-1}$,
(3) $g^{m} g^{n}=g^{m+n}$, and
(4) $\left(g^{m}\right)^{n}=g^{m n}$.

Theorem 1.9. Let G be a group. If $g, h \in G$, then $(g h)^{-1}=h^{-1} g^{-1}$.

1.3. Orders of elements.

Definition 1.10. Let G be a group, and let $g \in G$. If $g^{n}=1$ for some positive $n \in \mathbb{N}$, then we define the order of g, denoted $|g|$, to be the smallest such n. Otherwise, we say that g has infinite order and write $|g|=\infty$. The order of G is defined to be the cardinality of G, denoted $|G|$.

Fact 1.11 (Division Algorithm). Let n be an integer and m a positive integer. There are unique integers q (the quotient) and r (the remainder) for which $n=q m+r$ and $0 \leq r<m$.

Theorem 1.12. Let G be a group and $n \in \mathbb{Z}$. If $g \in G$, then $g^{n}=1$ if and only if $|g|$ divides n.
Definition 1.13. Let G be a group. If $g, h \in G$, then we say that g and h commute if $g h=$ $h g$. More generally, $g_{1}, \ldots, g_{r} \in G$ are said to commute if $g_{i} g_{j}=g_{j} g_{i}$ for all $1 \leq i, j \leq r$.

Theorem 1.14. If g_{1}, \ldots, g_{r} are commuting elements of a group, then $\left|g_{1} \cdots g_{r}\right|$ must divide $\operatorname{lcm}\left(\left|g_{1}\right|, \ldots,\left|g_{r}\right|\right)$.

Problem 1.15. Determine if the conclusion of the previous theorem can be improved to read "...then $\left|g_{1} \cdots g_{r}\right|=\operatorname{lcm}\left(\left|g_{1}\right|, \ldots,\left|g_{r}\right|\right)$."

Definition 1.16. We call a group G abelian (or commutative) if $g h=h g$ for all $g, h \in G$.
Theorem 1.17. If every nontrivial element of a group has order 2 , then the group is abelian.
Problem 1.18. Do you think that there is something special about the number 2 that makes the previous theorem work? If so, what might it be. If not, state a more general theorem that you believe to be true.

