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1. ABSTRACT GROUPS

“Abstraction is real, probably more real than nature.”
- Josef Albers

1.1. The definition.

DEerintTION 1.1. Let G be a set with a binary operation *. The structure G = (G, *) is called
a group if the following axioms hold:

(1) forall x,y,z € G,we have (x x y) * z = x * (y * z),

(2) there exists an element e € G such thatforall x € G, x xe = x = e * x, and

(3) for all x € G, there exists a w such that x «s w = e = w * x.

We often write xy in place of x * y.

THeoREM 1.2. Let G bea group. If e1,ep € Gand forall x € G, xe; = x = e;x and xep = X = eX,
then ey = ey. In other words, G has a unique “identity” element.

NortaTtion 1.3. The previous theorem states that every group has a unique element e sat-
isfying axiom (2) from Definition 1.1. This element will be called the identity or trivial
element of the group. For groups whose binary operation is denote by * or -, the default
symbol for the identity (in these notes) will be 1. However, if the binary operation is denote
by +, the default symbol for the identity will be 0.

THeorem 1.4. Let G be a group, and let x € G. If wy,wp, € G with xwy; = 1 = wyx and
xwy =1 = wyx, then wy = wy. In other words, every element of G has a unique “inverse.”

NortatioN 1.5. Theorem 1.4 states that for every element x of a group there is a unique
element w satisfying axiom (3) from Definition 1.1 This element will be called the inverse
of x. For groups whose binary operation is denote by * or -, the default notation for the
inverse of x will be x™1; however, if the binary operation is denote by +, the inverse of x
will be denoted by —x.

ProsLEM 1.6. Give examples of groups with the following properties by explicitly defining
the binary operation and noting the identity and inverses:

(1) a group with 4 elements,

(2) a group with 4 elements for which multiplication is truly different than the previous
example, and

(3) an infinite group.



1.2. Basic arithmetic.

NortatioN 1.7. Let G be a group. If ¢, h € G, then we call gh the product of ¢ and h. Also,
for n € N, ¢g" denotes the product of ¢ with itself n-times, and ¢~" denotes ( g‘l)n.

THeEOREM 1.8. Let G be a group. If g € G and m,n € Z, then
(1) 1" =1,
2) g = (g7,
(3) gmgn — gm+n/and
@ (g")" =g,
Tueorem 1.9. Let G be a group. If ¢, h € G, then (¢h)™' = h=1¢7L.
1.3. Orders of elements.
DerINITION 1.10. Let G be a group, and let ¢ € G. If g" = 1 for some positive n € N, then
we define the order of g, denoted |g|, to be the smallest such n. Otherwise, we say that g

has infinite order and write |g| = co. The order of G is defined to be the cardinality of G,
denoted |G]|.

Facr 1.11 (Division Algorithm). Let n be an integer and m a positive integer. There are
unique integers g (the quotient) and r (the remainder) for whichn = gm+rand 0 < r < m.

Tueorem 1.12. Let G bea group and n € Z. If g € G, then " =1 if and only if |g| divides n.

DerINITION 1.13. Let G be a group. If g, h € G, then we say that ¢ and h commute if gh =
hg. More generally, g1, ..., g, € G are said to commute if g;¢; = g;g; forall1 <i,j <.

Tueorem 1.14. If g1, ..., gr are commuting elements of a group, then |g1 - - - g,| must divide
lcm(|g1|/ ey |g7‘|)

ProBLEM 1.15. Determine if the conclusion of the previous theorem can be improved to
read “...then |g1--- g/ =lem(|g1l, ..., 1g]).”

DeriniTION 1.16. We call a group G abelian (or commutative) if gh = hg forall g, h € G.
Tueorem 1.17. If every nontrivial element of a group has order 2, then the group is abelian.
ProsLEM 1.18. Do you think that there is something special about the number 2 that makes

the previous theorem work? If so, what might it be. If not, state a more general theorem
that you believe to be true.



