THEORY OF GROUPS

NOTES FOR THE SENIOR SEMINAR IN ALGEBRA HAMILTON COLLEGE, FALL 2015.

1. Abstract groups

"Abstraction is real, probably more real than nature." - Josef Albers

1.1. The definition.

DEFINITION 1.1. Let *G* be a set with a binary operation *. The structure $\mathbb{G} = (G, *)$ is called a *group* if the following axioms hold:

(1) for all $x, y, z \in G$, we have (x * y) * z = x * (y * z),

(2) there exists an element $e \in G$ such that for all $x \in G$, x * e = x = e * x, and

(3) for all $x \in G$, there exists a w such that x * w = e = w * x.

We often write xy in place of x * y.

THEOREM 1.2. Let G be a group. If $e_1, e_2 \in G$ and for all $x \in G$, $xe_1 = x = e_1x$ and $xe_2 = x = e_2x$, then $e_1 = e_2$. In other words, G has a unique "identity" element.

NOTATION 1.3. The previous theorem states that every group has a *unique* element *e* satisfying axiom (2) from Definition 1.1. This element will be called the *identity* or *trivial* element of the group. For groups whose binary operation is denote by * or \cdot , the default symbol for the identity (in these notes) will be 1. However, if the binary operation is denote by +, the default symbol for the identity will be 0.

THEOREM 1.4. Let G be a group, and let $x \in G$. If $w_1, w_2 \in G$ with $xw_1 = 1 = w_1x$ and $xw_2 = 1 = w_2x$, then $w_1 = w_2$. In other words, every element of G has a unique "inverse."

NOTATION 1.5. Theorem 1.4 states that for every element x of a group there is a *unique* element w satisfying axiom (3) from Definition 1.1 This element will be called the *inverse* of x. For groups whose binary operation is denote by * or \cdot , the default notation for the inverse of x will be x^{-1} ; however, if the binary operation is denote by +, the inverse of x will be denoted by -x.

PROBLEM 1.6. Give examples of groups with the following properties by *explicitly* defining the binary operation and noting the identity and inverses:

- (1) a group with 4 elements,
- (2) a group with 4 elements for which multiplication is *truly different* than the previous example, and
- (3) an infinite group.

1.2. Basic arithmetic.

NOTATION 1.7. Let *G* be a group. If $g, h \in G$, then we call gh the *product* of g and h. Also, for $n \in \mathbb{N}$, g^n denotes the product of g with itself n-times, and g^{-n} denotes $(g^{-1})^n$.

THEOREM 1.8. Let G be a group. If $g \in G$ and $m, n \in \mathbb{Z}$, then

(1) $1^{n} = 1$, (2) $g^{-n} = (g^{n})^{-1}$, (3) $g^{m}g^{n} = g^{m+n}$, and (4) $(g^{m})^{n} = g^{mn}$.

THEOREM 1.9. Let G be a group. If g, $h \in G$, then $(gh)^{-1} = h^{-1}g^{-1}$.

1.3. Orders of elements.

DEFINITION 1.10. Let *G* be a group, and let $g \in G$. If $g^n = 1$ for some positive $n \in \mathbb{N}$, then we define the *order* of *g*, denoted |g|, to be the smallest such *n*. Otherwise, we say that *g* has *infinite order* and write $|g| = \infty$. The *order* of *G* is defined to be the cardinality of *G*, denoted |G|.

FACT 1.11 (Division Algorithm). Let *n* be an integer and *m* a positive integer. There are **unique** integers *q* (the quotient) and *r* (the remainder) for which n = qm+r and $0 \le r < m$.

THEOREM 1.12. Let G be a group and $n \in \mathbb{Z}$. If $g \in G$, then $g^n = 1$ if and only if |g| divides n.

DEFINITION 1.13. Let *G* be a group. If $g, h \in G$, then we say that g and h commute if gh = hg. More generally, $g_1, \ldots, g_r \in G$ are said to commute if $g_ig_j = g_jg_i$ for all $1 \le i, j \le r$.

THEOREM 1.14. If g_1, \ldots, g_r are commuting elements of a group, then $|g_1 \cdots g_r|$ must divide $lcm(|g_1|, \ldots, |g_r|)$.

PROBLEM 1.15. Determine if the conclusion of the previous theorem can be improved to read "... then $|g_1 \cdots g_r| = \text{lcm}(|g_1|, \dots, |g_r|)$."

DEFINITION 1.16. We call a group *G* abelian (or *commutative*) if gh = hg for all $g, h \in G$.

THEOREM 1.17. *If every nontrivial element of a group has order 2, then the group is abelian.*

PROBLEM 1.18. Do you think that there is something special about the number 2 that makes the previous theorem work? If so, what might it be. If not, state a more general theorem that you believe to be true.