2. Examples

"A good stock of examples, as large as possible, is indispensable for a thorough understanding of any concept, and when I want to learn something new, I make it my first job to build one."

- Paul Halmos

2.1. Symmetric groups.

Definition 2.1. Let X be a set. A permutation of X is a bijection from X to X. The identity permutation is the permutation $\operatorname{id}_{X}: X \rightarrow X$ defined by $\operatorname{id}_{X}(x)=x$ for all $x \in X$.

Definition 2.2. Let X be any set. The symmetric group on X, denoted $\operatorname{Sym}(X)$, is the set of all permutations of X. We denote by S_{n} the symmetric group on $X=\{1,2, \ldots, n\}$.

Theorem 2.3. If X is any set, then $\operatorname{Sym}(X)$ is a group with respect to function composition.
Notation 2.4 (cf. Notation 1.7). If $a, b \in \operatorname{Sym}(X)$, then $a b$ denotes the (function) composition $a \circ b$, i.e $a b(x)=a(b(x))$ for every $x \in X$.

Problem 2.5 (Diagrammatic representation of S_{n}).
(1) Which element of S_{4} does the following diagram seem to represent?

(2) What is the diagram for the inverse of the previous element.
(3) Formulate a rule in this notation for finding the inverse of an element of S_{4}.
(4) What is the diagram for the identity.
(5) Consider $\sigma, \tau \in S_{4}$ whose diagrams are given below. Determine the diagrams for $\sigma \tau$ and $\tau \sigma$.

(6) Formulate a rule in this notation for finding the composition of two elements.

Problem 2.6 (Two-line notion for S_{n}).
(1) Which element of S_{4} does the following two-line matrix seem to represent?

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 4 & 2
\end{array}\right)
$$

(2) What is the two-line notation for the inverse of the previous element.
(3) Formulate a rule in this notation for finding the inverse of an element of S_{4}.
(4) What is the two-line notation for the identity.
(5) Determine the two-line notations for σ and τ from Problem 2.5, and do the same for $\sigma \tau$ and $\tau \sigma$.
(6) Formulate a rule in this notation for finding the composition of two elements.

Problem 2.7 (Disjoint cycle notation for S_{n}).
(1) Which element of S_{4} does the following notation seem to represent?

$$
(1)\left(\begin{array}{lll}
3 & 4 & 2
\end{array}\right)
$$

Note: in this notation, we will omit "cycles" of length 1 and simply write ($\left.\begin{array}{lll}3 & 4 & 2\end{array}\right)$.
(2) Using disjoint cycle notation, how many different ways are there to represent the previous element?
(3) Write the inverse of the previous element in disjoint cycle notation.
(4) Formulate a rule in this notation for finding the inverse of an element of S_{4}.
(5) Determine disjoint cycle notation for σ and τ from Problem 2.5, and do the same for $\sigma \tau$ and $\tau \sigma$.
(6) Formulate a rule in this notation for finding the composition of two elements.

Fact 2.8. Every element of S_{n} can be written as a product of disjoint cycles.
Theorem 2.9. If $n:=|X|$ is finite, then $|\operatorname{Sym}(X)|=\underline{\text { (in terms of } n) .}$.
Definition 2.10. The list, in increasing order and with repetitions, of the lengths of the cycles in the disjoint cycle notation for an element of a symmetric group is called the cycle type of the element.

Remark 2.11. In Problem 2.7, σ has cycle type (1,3), and as we tend to omit cycles of length 1 , we say that σ is a 3 -cycle. The permutation τ has cycle type $(2,2)$. The element
$\left(\begin{array}{lll}3 & 4 & 2\end{array}\right)\left(\begin{array}{ll}1 & 7\end{array}\right)\left(\begin{array}{ll}6 & 8\end{array}\right) \in S_{10}$ is a $(2,2,3)$-cycle; its cycle type is $(1,1,1,2,2,3)$.

Problem 2.12.

(1) Find an element of S_{4} of order 2.
(2) How many elements of S_{4} have order 2? What are the possible cycle types of such an element?
(3) Find an element of S_{4} of order 3.
(4) How many elements of S_{4} have order 3? What are the possible cycle types of such an element?
(5) What are the possible cycle types for an element of S_{4} ?

Problem 2.13. Let $\sigma \in S_{n}$ (with $n \in \mathbb{N}$), and fix a prime p.
(1) Suppose that the order of σ is p^{k} for some natural number k. Describe the possible cycle types for σ.
(2) Suppose that the cycle type of σ only involves powers of p, e.g. $\left(1,1, p, p^{2}, p^{2}, p^{4}\right)$. Determine the order of σ.
(3) Suppose that the cycle type of σ is $(2,3)$. Determine the order of σ.

Theorem 2.14. The group S_{n} has \qquad (in terms of n) elements of order 2.

Theorem 2.15. If $\sigma \in S_{n}$ has cycle type $\left(m_{1}, \ldots, m_{r}\right)$, then $|\sigma|=$ (in terms of $\left.m_{1}, \ldots, m_{r}\right)$.
Theorem 2.16. If $\sigma \in S_{n}$, then $|\sigma|$ divides $\left|S_{n}\right|$.

2.2. Integers modulo n.

Definition 2.17. Let n be a positive integer. For each $a \in \mathbb{Z}$ define the equivalence class of a modulo n to be $[a]_{n}:=\{a+k n: k \in \mathbb{Z}\}$. Further, define $\mathbb{Z}_{n}:=\left\{[a]_{n}: a \in \mathbb{Z}\right\}$.

Remark 2.18. In the previous definition, $[a]_{n}$ is a set, e.g. $[2]_{7}=\{\ldots,-12,-5,2,9,16, \ldots\}$. Also, note that $[a]_{n}=[b]_{n}$ if and only if $b \in[a]_{n}$. For example, $[2]_{7}=[-12]_{7}$.

Fact 2.19. The following rules yield well-defined operations on \mathbb{Z}_{n} :
(1) $[a]_{n}+_{n}[b]_{n}:=[a+b]_{n}$, and
(2) $[a]_{n} \cdot{ }_{n}[b]_{n}:=[a b]_{n}$.

When the context is clear, we simply use + and \cdot for the operations instead of $+_{n}$ and \cdot_{n}.
Theorem 2.20. For every positive integer $n,\left(\mathbb{Z}_{n},+\right)$ is a group.
Definition 2.21. If G is a group and $g \in G$, we say that g generates G if every $h \in G$ is of the form $h=g^{k}$ for some $k \in \mathbb{Z}$; in this case we write $G=\langle g\rangle$. If G is generated by one of its elements, G is said to be cyclic.

Theorem 2.22. For every positive integer $n,\left(\mathbb{Z}_{n},+\right)$ is cyclic.

Рroblem 2.23. Make and provide evidence for (or prove) a conjecture as to which elements of \mathbb{Z}_{n} can generate \mathbb{Z}_{n}. [Hint: experiment! $\operatorname{Try} \mathbb{Z}_{5}, \mathbb{Z}_{6}, \mathbb{Z}_{12}, \ldots$]

Theorem 2.24. The group $(\mathbb{Z},+)$ is cyclic.
Problem 2.25. Find all elements of $(\mathbb{Z},+)$ that generate it.
Theorem 2.26. Every cyclic group is abelian.

2.3. Linear groups.

Definition 2.27. Let F be a field, and let $M_{n}(F)$ be the collection of $n \times n$ matrices with entries from F.
(1) The general linear group is $\mathrm{GL}_{n}(F):=\left\{A \in M_{n}(F): \operatorname{det} A \neq 0\right\}$.
(2) The special linear group is $\mathrm{SL}_{n}(F):=\left\{A \in M_{n}(F): \operatorname{det} A=1\right\}$.

Theorem 2.28. If F is a field, then $\mathrm{GL}_{n}(F)$ and $\mathrm{SL}_{n}(F)$ are both groups with respect to matrix multiplication.

Theorem 2.29. If F is a field and $n \geq 2$, then $\mathrm{GL}_{n}(F)$ is nonabelian.
Theorem 2.30. The group $\mathrm{SL}_{2}(\mathbb{R})$ has exactly one element of order 2.

2.4. Automorphism groups of graphs.

Definition 2.31. A pair $\mathcal{G}=(V, E)$, where V is a set and $E \subseteq V \times V$, is called a directed graph (or digraph). The elements of V are called vertices, and the elements of E are called directed edges.

Remark 2.32. Digraphs are usually represented by pictures. For example, consider the following picture depicting the digraph (which we will call C_{4}) defined by $C_{4}=(V, E)$ where $V:=\{1,2,3,4\}$ and $E:=\{(1,2),(2,3),(3,4),(4,1)\}$.

Definition 2.33. An automorphism of a digraph $\mathcal{G}=(V, E)$ is defined to be a permutation $\sigma \in \operatorname{Sym}(V)$ such that $(x, y) \in E$ if and only if $(\sigma(x), \sigma(y)) \in E$. The set of all automorphisms of \mathcal{G} is denoted $\operatorname{Aut}(\mathcal{G})$.

Theorem 2.34. If \mathcal{G} is a digraph, then $\operatorname{Aut}(\mathcal{G})$ is a group.
Problem 2.35. Consider the digraph C_{4} defined in Remark 2.32.
(1) Write down all elements of $\operatorname{Aut}\left(C_{4}\right)$ in disjoint cycle notation.
(2) Describe the various elements of $\operatorname{Aut}\left(C_{4}\right)$ geometrically, e.g. reflection, rotation, ...
(3) True or False (and explain): is Aut $\left(C_{4}\right)$ cyclic?
(4) True or False (and explain): is $\operatorname{Aut}\left(C_{4}\right)$ is abelian?

Problem 2.36. Repeat the previous problem for $\mathcal{D}_{4}=(V, E)$ where $V:=\{1,2,3,4\}$ and $E:=$ $\{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,1),(1,4)\}$. Whenever we have "both directions" of an edge, we draw it with no arrows (instead of two). Here is the picture for \mathcal{D}_{4}.

Remark 2.37. If E is symmetric (as Problem 2.39), then \mathcal{G} is called a graph, and we speak of edges instead of directed edges.

Definition 2.38. Generalizing the previous problems, we get the graphs \mathcal{D}_{n} and C_{n} below.

(1) We denote $\operatorname{Aut}\left(C_{n}\right)$ by C_{n}.
(2) We denote $\operatorname{Aut}\left(\mathcal{D}_{n}\right)$ by D_{n} (or often $D_{2 n}$); D_{n} is the dihedral group of order $2 n$.

Problem 2.39. Repeat Problem 2.35 for the digraph $\mathcal{G}=(V, E)$ with $V:=\{1,2,3,4\}$ and $E:=\{(1,2),(2,1),(2,3),(3,4),(4,3),(1,4)\}$.

