2. Examples

"A good stock of examples, as large as possible, is indispensable for a thorough understanding of any concept, and when I want to learn something new, I make it my first job to build one." - Paul Halmos

2.1. Symmetric groups.

DEFINITION 2.1. Let X be a set. A *permutation* of X is a bijection from X to X. The *identity permutation* is the permutation $id_X : X \to X$ defined by $id_X(x) = x$ for all $x \in X$.

DEFINITION 2.2. Let *X* be any set. The *symmetric group* on *X*, denoted Sym(*X*), is the set of all permutations of *X*. We denote by S_n the symmetric group on $X = \{1, 2, ..., n\}$.

THEOREM 2.3. If X is any set, then Sym(X) is a group with respect to function composition.

NOTATION 2.4 (cf. Notation 1.7). If $a, b \in \text{Sym}(X)$, then ab denotes the (function) composition $a \circ b$, i.e ab(x) = a(b(x)) for every $x \in X$.

PROBLEM 2.5 (Diagrammatic representation of S_n).

(1) Which element of S_4 does the following diagram seem to represent?

- (2) What is the diagram for the inverse of the previous element.
- (3) Formulate a rule in this notation for finding the inverse of an element of S_4 .
- (4) What is the diagram for the identity.
- (5) Consider $\sigma, \tau \in S_4$ whose diagrams are given below. Determine the diagrams for $\sigma \tau$ and $\tau \sigma$.

(6) Formulate a rule in this notation for finding the composition of two elements.

PROBLEM 2.6 (Two-line notion for S_n).

(1) Which element of S_4 does the following two-line matrix seem to represent?

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$$

- (2) What is the two-line notation for the inverse of the previous element.
- (3) Formulate a rule in this notation for finding the inverse of an element of S_4 .
- (4) What is the two-line notation for the identity.
- (5) Determine the two-line notations for σ and τ from Problem 2.5, and do the same for $\sigma\tau$ and $\tau\sigma$.
- (6) Formulate a rule in this notation for finding the composition of two elements.

PROBLEM 2.7 (Disjoint cycle notation for S_n).

(1) Which element of S_4 does the following notation seem to represent?

 $(1)(3 \ 4 \ 2)$

Note: in this notation, we will omit "cycles" of length 1 and simply write (3 4 2).

- (2) Using *disjoint cycle notation*, how many different ways are there to represent the previous element?
- (3) Write the inverse of the previous element in disjoint cycle notation.
- (4) Formulate a rule in this notation for finding the inverse of an element of S_4 .
- (5) Determine disjoint cycle notation for σ and τ from Problem 2.5, and do the same for $\sigma\tau$ and $\tau\sigma$.
- (6) Formulate a rule in this notation for finding the composition of two elements.

FACT 2.8. Every element of S_n can be written as a product of disjoint cycles.

THEOREM 2.9. If n := |X| is finite, then |Sym(X)| = (in terms of n).

DEFINITION 2.10. The list, in increasing order and with repetitions, of the lengths of the cycles in the disjoint cycle notation for an element of a symmetric group is called the *cycle type* of the element.

REMARK 2.11. In Problem 2.7, σ has cycle type (1, 3), and as we tend to omit cycles of length 1, we say that σ is a 3-cycle. The permutation τ has cycle type (2, 2). The element (3 4 2)(1 7)(6 8) \in S_{10} is a (2, 2, 3)-cycle; its cycle type is (1, 1, 1, 2, 2, 3).

Problem 2.12.

- (1) Find an element of S_4 of order 2.
- (2) How many elements of S_4 have order 2? What are the possible cycle types of such an element?
- (3) Find an element of S_4 of order 3.
- (4) How many elements of S_4 have order 3? What are the possible cycle types of such an element?
- (5) What are the possible cycle types for an element of S_4 ?

PROBLEM 2.13. Let $\sigma \in S_n$ (with $n \in \mathbb{N}$), and fix a prime p.

- (1) Suppose that the order of σ is p^k for some natural number k. Describe the possible cycle types for σ .
- (2) Suppose that the cycle type of σ only involves powers of p, e.g. $(1, 1, p, p^2, p^2, p^4)$. Determine the order of σ .
- (3) Suppose that the cycle type of σ is (2, 3). Determine the order of σ .

THEOREM 2.14. The group S_n has (in terms of n) elements of order 2.

THEOREM 2.15. If $\sigma \in S_n$ has cycle type (m_1, \ldots, m_r) , then $|\sigma| = (in \text{ terms of } m_1, \ldots, m_r)$.

THEOREM 2.16. If $\sigma \in S_n$, then $|\sigma|$ divides $|S_n|$.

2.2. Integers modulo *n*.

DEFINITION 2.17. Let *n* be a positive integer. For each $a \in \mathbb{Z}$ define the *equivalence class* of *a* modulo *n* to be $[a]_n := \{a + kn : k \in \mathbb{Z}\}$. Further, define $\mathbb{Z}_n := \{[a]_n : a \in \mathbb{Z}\}$.

REMARK 2.18. In the previous definition, $[a]_n$ is a *set*, e.g. $[2]_7 = \{\dots, -12, -5, 2, 9, 16, \dots\}$. Also, note that $[a]_n = [b]_n$ if and only if $b \in [a]_n$. For example, $[2]_7 = [-12]_7$.

FACT 2.19. The following rules yield well-defined operations on \mathbb{Z}_n :

(1) $[a]_n +_n [b]_n := [a + b]_n$, and

(2) $[a]_n \cdot_n [b]_n := [ab]_n$.

When the context is clear, we simply use + and \cdot for the operations instead of +_n and ·_n.

THEOREM 2.20. For every positive integer n, $(\mathbb{Z}_n, +)$ is a group.

DEFINITION 2.21. If *G* is a group and $g \in G$, we say that *g* generates *G* if every $h \in G$ is of the form $h = g^k$ for some $k \in \mathbb{Z}$; in this case we write $G = \langle g \rangle$. If *G* is generated by one of its elements, *G* is said to be *cyclic*.

THEOREM 2.22. For every positive integer n, $(\mathbb{Z}_n, +)$ is cyclic.

PROBLEM 2.23. Make and provide evidence for (or prove) a conjecture as to which elements of \mathbb{Z}_n can generate \mathbb{Z}_n . [*Hint: experiment*! *Try* \mathbb{Z}_5 , \mathbb{Z}_6 , \mathbb{Z}_{12} , ...]

THEOREM 2.24. The group $(\mathbb{Z}, +)$ is cyclic.

PROBLEM 2.25. Find all elements of $(\mathbb{Z}, +)$ that generate it.

THEOREM 2.26. *Every cyclic group is abelian.*

2.3. Linear groups.

DEFINITION 2.27. Let *F* be a field, and let $M_n(F)$ be the collection of $n \times n$ matrices with entries from *F*.

(1) The *general linear group* is $GL_n(F) := \{A \in M_n(F) : \det A \neq 0\}.$

(2) The *special linear group* is $SL_n(F) := \{A \in M_n(F) : \det A = 1\}.$

THEOREM 2.28. If F is a field, then $GL_n(F)$ and $SL_n(F)$ are both groups with respect to matrix multiplication.

THEOREM 2.29. If *F* is a field and $n \ge 2$, then $GL_n(F)$ is nonabelian.

THEOREM 2.30. The group $SL_2(\mathbb{R})$ has exactly one element of order 2.

2.4. Automorphism groups of graphs.

DEFINITION 2.31. A pair $\mathcal{G} = (V, E)$, where *V* is a set and $E \subseteq V \times V$, is called a *directed graph* (or *digraph*). The elements of *V* are called *vertices*, and the elements of *E* are called *directed edges*.

REMARK 2.32. Digraphs are usually represented by pictures. For example, consider the following picture depicting the digraph (which we will call C_4) defined by $C_4 = (V, E)$ where $V := \{1, 2, 3, 4\}$ and $E := \{(1, 2), (2, 3), (3, 4), (4, 1)\}$.

DEFINITION 2.33. An *automorphism of a digraph* $\mathcal{G} = (V, E)$ is defined to be a permutation $\sigma \in \text{Sym}(V)$ such that $(x, y) \in E$ if and only if $(\sigma(x), \sigma(y)) \in E$. The set of all automorphisms of \mathcal{G} is denoted $\text{Aut}(\mathcal{G})$.

THEOREM 2.34. If G is a digraph, then Aut(G) is a group.

PROBLEM 2.35. Consider the digraph *C*₄ defined in Remark 2.32.

- (1) Write down all elements of $Aut(C_4)$ in disjoint cycle notation.
- (2) Describe the various elements of $Aut(C_4)$ geometrically, e.g. reflection, rotation, ...
- (3) True or False (and explain): is $Aut(C_4)$ cyclic?
- (4) True or False (and explain): is $Aut(C_4)$ is abelian?

PROBLEM 2.36. Repeat the previous problem for $\mathcal{D}_4 = (V, E)$ where $V := \{1, 2, 3, 4\}$ and $E := \{(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 1), (1, 4)\}$. Whenever we have "both directions" of an edge, we draw it with no arrows (instead of two). Here is the picture for \mathcal{D}_4 .

REMARK 2.37. If *E* is symmetric (as Problem 2.39), then *G* is called a *graph*, and we speak of *edges* instead of directed edges.

DEFINITION 2.38. Generalizing the previous problems, we get the graphs \mathcal{D}_n and \mathcal{C}_n below.

(1) We denote $Aut(C_n)$ by C_n .

(2) We denote Aut(\mathcal{D}_n) by D_n (or often D_{2n}); D_n is the *dihedral group of order* 2n.

PROBLEM 2.39. Repeat Problem 2.35 for the digraph $\mathcal{G} = (V, E)$ with $V := \{1, 2, 3, 4\}$ and $E := \{(1, 2), (2, 1), (2, 3), (3, 4), (4, 3), (1, 4)\}.$