
2. E�������
“A good stock of examples, as large as possible, is indispensable for a thorough understanding of any

concept, and when I want to learn something new, I make it my �rst job to build one.”
- Paul Halmos

2.1. Symmetric groups.

D��������� 2.1. Let X be a set. A permutation of X is a bijection from X to X. The identity

permutation is the permutation idX : X ! X de�ned by idX(x) = x for all x 2 X.

D��������� 2.2. Let X be any set. The symmetric group on X, denoted Sym(X), is the set
of all permutations of X. We denote by Sn the symmetric group on X = {1, 2, . . . , n}.
T������ 2.3. If X is any set, then Sym(X) is a group with respect to function composition.

N������� 2.4 (cf. Notation 1.7). If a , b 2 Sym(X), then ab denotes the (function) compo-
sition a � b, i.e ab(x) = a(b(x)) for every x 2 X.

P������ 2.5 (Diagrammatic representation of Sn).
(1) Which element of S4 does the following diagram seem to represent?
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2
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4

(2) What is the diagram for the inverse of the previous element.
(3) Formulate a rule in this notation for �nding the inverse of an element of S4.
(4) What is the diagram for the identity.
(5) Consider �, ⌧ 2 S4 whose diagrams are given below. Determine the diagrams for
�⌧ and ⌧�.
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(6) Formulate a rule in this notation for �nding the composition of two elements.

P������ 2.6 (Two-line notion for Sn).
(1) Which element of S4 does the following two-line matrix seem to represent?

 

1 2 3 4
1 3 4 2

!

(2) What is the two-line notation for the inverse of the previous element.
(3) Formulate a rule in this notation for �nding the inverse of an element of S4.
(4) What is the two-line notation for the identity.
(5) Determine the two-line notations for � and ⌧ from Problem 2.5, and do the same

for �⌧ and ⌧�.
(6) Formulate a rule in this notation for �nding the composition of two elements.
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P������ 2.7 (Disjoint cycle notation for Sn).
(1) Which element of S4 does the following notation seem to represent?

(1) (3 4 2)
Note: in this notation, we will omit “cycles” of length 1 and simply write (3 4 2).

(2) Using disjoint cycle notation, how many di�erent ways are there to represent the
previous element?

(3) Write the inverse of the previous element in disjoint cycle notation.
(4) Formulate a rule in this notation for �nding the inverse of an element of S4.
(5) Determine disjoint cycle notation for � and ⌧ from Problem 2.5, and do the same

for �⌧ and ⌧�.
(6) Formulate a rule in this notation for �nding the composition of two elements.

F��� 2.8. Every element of Sn can be written as a product of disjoint cycles.

T������ 2.9. If n := |X | is �nite, then | Sym(X)| = (in terms of n) .

D��������� 2.10. The list, in increasing order and with repetitions, of the lengths of the
cycles in the disjoint cycle notation for an element of a symmetric group is called the cycle

type of the element.

R����� 2.11. In Problem 2.7, � has cycle type (1, 3), and as we tend to omit cycles of
length 1, we say that � is a 3-cycle. The permutation ⌧ has cycle type (2, 2). The element
(3 4 2)(1 7)(6 8) 2 S10 is a (2, 2, 3)-cycle; its cycle type is (1, 1, 1, 2, 2, 3).

P������ 2.12.
(1) Find an element of S4 of order 2.
(2) How many elements of S4 have order 2? What are the possible cycle types of such

an element?
(3) Find an element of S4 of order 3.
(4) How many elements of S4 have order 3? What are the possible cycle types of such

an element?
(5) What are the possible cycle types for an element of S4?

P������ 2.13. Let � 2 Sn (with n 2 N), and �x a prime p.
(1) Suppose that the order of � is pk for some natural number k. Describe the possible

cycle types for �.
(2) Suppose that the cycle type of � only involves powers of p, e.g. (1, 1, p , p2, p2, p4).

Determine the order of �.
(3) Suppose that the cycle type of � is (2, 3). Determine the order of �.

T������ 2.14. The group Sn has (in terms of n) elements of order 2.

T������ 2.15. If � 2 Sn has cycle type (m1, . . . ,mr), then |� | = (in terms of m1, . . . ,mr) .

T������ 2.16. If � 2 Sn , then |� | divides |Sn |.
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2.2. Integers modulo n.

D��������� 2.17. Let n be a positive integer. For each a 2 Z de�ne the equivalence class

of a modulo n to be [a]n := {a + kn : k 2 Z}. Further, de�ne Zn := {[a]n : a 2 Z}.

R����� 2.18. In the previous de�nition, [a]n is a set, e.g. [2]7 = {. . . , �12, �5, 2, 9, 16, . . .}.
Also, note that [a]n = [b]n if and only if b 2 [a]n . For example, [2]7 = [�12]7.

F��� 2.19. The following rules yield well-de�ned operations on Zn :
(1) [a]n +n [b]n := [a + b]n , and
(2) [a]n ·n [b]n := [ab]n .

When the context is clear, we simply use + and · for the operations instead of +n and ·n .

T������ 2.20. For every positive integer n, (Zn , +) is a group.

D��������� 2.21. If G is a group and g 2 G, we say that g generates G if every h 2 G is of
the form h = gk for some k 2 Z; in this case we write G = hgi. If G is generated by one of
its elements, G is said to be cyclic.

T������ 2.22. For every positive integer n, (Zn , +) is cyclic.

P������ 2.23. Make and provide evidence for (or prove) a conjecture as to which elements
of Zn can generate Zn . [Hint: experiment! Try Z5, Z6, Z12, . . . ]

T������ 2.24. The group (Z, +) is cyclic.

P������ 2.25. Find all elements of (Z, +) that generate it.

T������ 2.26. Every cyclic group is abelian.

2.3. Linear groups.

D��������� 2.27. Let F be a �eld, and let Mn(F) be the collection of n ⇥ n matrices with
entries from F.

(1) The general linear group is GLn(F) := {A 2 Mn(F) : det A , 0}.
(2) The special linear group is SLn(F) := {A 2 Mn(F) : det A = 1}.

T������ 2.28. If F is a �eld, then GLn(F) and SLn(F) are both groups with respect to matrix
multiplication.

T������ 2.29. If F is a �eld and n � 2, then GLn(F) is nonabelian.

T������ 2.30. The group SL2(R) has exactly one element of order 2.
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2.4. Automorphism groups of graphs.

D��������� 2.31. A pair G = (V, E), where V is a set and E ✓ V ⇥ V , is called a directed

graph (or digraph). The elements of V are called vertices, and the elements of E are called
directed edges.

R����� 2.32. Digraphs are usually represented by pictures. For example, consider the
following picture depicting the digraph (which we will call C4) de�ned by C4 = (V, E)
where V := {1, 2, 3, 4} and E := {(1, 2), (2, 3), (3, 4), (4, 1)}.

1

2 3

4

D��������� 2.33. An automorphism of a digraph G = (V, E) is de�ned to be a permu-
tation � 2 Sym(V) such that (x , y) 2 E if and only if (�(x), �(y)) 2 E. The set of all
automorphisms of G is denoted Aut(G).

T������ 2.34. If G is a digraph, then Aut(G) is a group.

P������ 2.35. Consider the digraph C4 de�ned in Remark 2.32.
(1) Write down all elements of Aut(C4) in disjoint cycle notation.
(2) Describe the various elements of Aut(C4) geometrically, e.g. re�ection, rotation, . . .
(3) True or False (and explain): is Aut(C4) cyclic?
(4) True or False (and explain): is Aut(C4) is abelian?

P������ 2.36. Repeat the previous problem forD4 = (V, E) where V := {1, 2, 3, 4} and E :=
{(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 1), (1, 4)}. Whenever we have “both directions” of
an edge, we draw it with no arrows (instead of two). Here is the picture for D4.

1
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4

R����� 2.37. If E is symmetric (as Problem 2.39), then G is called a graph, and we speak
of edges instead of directed edges.

D��������� 2.38. Generalizing the previous problems, we get the graphsDn and Cn below.
43

2

1 n

Cn

43

2

1 n

Dn

(1) We denote Aut(Cn) by Cn .
(2) We denote Aut(Dn) by Dn (or often D2n); Dn is the dihedral group of order 2n.

P������ 2.39. Repeat Problem 2.35 for the digraph G = (V, E) with V := {1, 2, 3, 4} and
E := {(1, 2), (2, 1), (2, 3), (3, 4), (4, 3), (1, 4)}.
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