
4. G���� �������
“Groups, as men, will be known by their actions.”

- Guillermo Moreno

4.1. The de�nition.

D��������� 4.1. An action of a group G on a set X is a function from ↵ : G ⇥ X ! X such
that the following hold for all g , h 2 G and all x 2 X; we write g · x in place of ↵(g , x).

(1) g · (h · x) = (gh) · x, and
(2) 1 · x = x.

P������ 4.2. Recall that D6 is the automorphism group of the regular hexagonD6. Let V
be the set of vertices of D6, let E the set of edges of D6, and let X = {a , b , c} be the set of
(three) diagonal edges shown below.
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(1) Show that D6 acts on V via the rule � · v = �(v) for all � 2 D6 and all v 2 V .
(2) Show that D6 acts on E via the rule � · (v1, v2) = (�(v1), �(v1)) for all � 2 D6 and all

(v1, v2) 2 E.
(3) Show that D6 acts on X via the rule � · (v1, v2) = (�(v1), �(v1)) for all � 2 D6 and all

(v1, v2) 2 X.

D��������� 4.3. Let G act on X.
(1) The action is transitive if for every x , y 2 X there is a g 2 G such that g · x = y.
(2) For g 2 G and x 2 X, we say that g �xes x if g · x = x.
(3) For x 2 X, the stabilizer of x, denoted Gx , is set of all g 2 G that �x x.

P������ 4.4. Let G = D6, and consider the action of G on X = {a , b , c} de�ned by the rule
� · (v1, v2) = (�(v1), �(v1)).
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(1) Is the action transitive?
(2) Determine the Ga .
(3) Find a numerical relationship between |G |, |X |, and |Ga |.
(4) Determine Ga ,b where Ga ,b is the set of elements of G that �x both a and b.
(5) Are there elements of G that �x every element of X? If so, �nd them all.

T������ 4.5. An action of a group G on X is transitive if there exists some x 2 X such that for
all y 2 X there is a g 2 G for which g · x = y.
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D��������� 4.6. Let G act on X.
(1) The kernel of the action is the subset of G that �xes every x 2 X.
(2) The action is said to be faithful if the kernel is trivial.

T������ 4.7. If G acts on X and x 2 X, then Gx is a subgroup of G, and the kernel of the action
is a normal subgroup.

T������ 4.8. Let G act on X. For every g 2 G, de�ne �g : X ! X by �g(x) = g · x. Then �g is
a bijection, i.e. �g 2 Sym(X). [Hint: make use of the fact that g has an inverse.]

T������ 4.9. Let G act on X, and de�ne � : G ! Sym(X) by �(g) = �g where �g is de�ned as
in the previous theorem. Then � is a homomorphism. [Hint: in order to show that �gh = �g ��h ,
show that �gh(x) = �g(�h(x)) for all x 2 X.]

D��������� 4.10. In the previous theorem, the function � : G ! Sym(X) is called the
associated permutation representation of the action of G on X.

R����� 4.11. Observe that the kernel of an action corresponds with the kernel of the
associated permutation representation, so an action is faithful if and only if the associated
permutation representation is injective.

P������ 4.12. As in Problem 4.4, consider the action of D6 the 3 diagonals of D6.
(1) What is the kernel of the action? Is the action faithful?
(2) What is the image of the associated permutation representation?

Note: the kernel is a subgroup of D6; the image of the representation is a subgroup of Sym(a , b , c).

P������ 4.13. Let G = C6. As with D6, we have an action of G on X = {a , b , c} de�ned by
� · (v1, v2) = (�(v1), �(v1)).

a
b

c

1

2

3 4

5

6

(1) Is the action transitive?
(2) Determine the Ga .
(3) Find a numerical relationship between |G |, |X |, and |Ga |.
(4) What is the kernel of the action. Is the action faithful?
(5) What is the image of the associated permutation representation?

4.2. Action by left multiplication.

T������ 4.14 (Action by left multiplication). Let G be a group, and let H be a subgroup. Then
the rule g · aH = (ga)H de�nes an action of G on the coset space G/H.

P������ 4.15. Let G be a group, and let H be a subgroup. Consider the action of G on
G/H by left multiplication (as in the previous theorem).
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(1) Is the action transitive?
(2) Show that the stabilizer of the coset aH is aHa�1.
(3) Show that the kernel of the action is Ta2G aHa�1. (Note that, in particular, this

shows that the kernel is a normal subgroup of G contained in H.)
(4) Give an example of a group G and a proper nontrivial subgroup H for which this

action is not faithful.

D��������� 4.16. A group is simple if it has no proper nontrivial normal subgroups.

R����� 4.17. Whenever a group G has a proper nontrivial normal subgroup N , we can
break G into two “simpler” pieces: N and G/N . The simple groups are the groups that can
not be broken down this way; they may be thought of as the building blocks of all groups.

T������ 4.18. If G is an in�nite group with a proper subgroup H of �nite index, then G is
not simple. [Hint: argue by contradiction, and consider the action of G on G/H by left
multiplication. This gives rise to the associated representation � : G ! Sym(G/H). Now,
if G is simple, what do you know about the kernel of the action? What does the First
Isomorphism Theorem, i.e. Theorem 3.78 and Remark 3.79, tell you?]

T������ 4.19. Let G be a �nite group with a proper subgroup H, and let n = |G : H |. If |G | does
not divide n!, then G is not simple. [Hint: same hint as the previous problem.]

4.3. Action by conjugation.

N������� 4.20. Let G be a group. For g 2 G, the function �g : G ! G de�ned by �g(h) =
gh g�1 is called conjugation by g.

T������ 4.21. If G is a group and g 2 G, then �g is an automorphism of G. In particular,
(1) if h 2 G, then |h | = |gh g�1 |, and
(2) if H is a subgroup of G, then gH g�1 is a subgroup of G with H � gH g�1.

T������ 4.22. Let �, ⌧ 2 Sn . If the disjoint cycle decomposition of � is
⇣

a1 a2 · · · ak1

⌘ ⇣

b1 b2 · · · bk2

⌘

· · · ,
then the disjoint cycle decomposition of ⌧�⌧�1 is

⇣

⌧(a1) ⌧(a2) · · · ⌧(ak1)
⌘ ⇣

⌧(b1) ⌧(b2) · · · ⌧(bk2)
⌘

· · · .
In particular, � and ⌧�⌧�1 have the same cycle type. [Hint: let  = ⌧�⌧�1, and note that the
theorem simply states that for all x , y 2 {1, . . . , n} if �(x) = y, then  (⌧(x)) = ⌧(y).]

T������ 4.23 (Action by conjugation). Let G be a group. Then
(1) the rule g · a = ga g�1 de�nes an action of G on G, and
(2) the rule g · H = gH g�1 de�nes an action of G on the set of all subgroups of G.

D��������� 4.24. Let H be a subgroup of a group G. The set NG(H) := {g 2 G | gH g�1 = H}
is called the normalizer of H in G.
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R����� 4.25. Note that we have some overlapping terminology. When G acts on itself by
conjugation (as in the �rst part of the previous theorem), the stabilizer of an element a
of G is CG(a). When G acts on its subgroups by conjugation (as in the second part of the
previous theorem), the stabilizer of a subgroup H is NG(H).

T������ 4.26. If H is a subgroup of a group G, then H is a normal subgroup of NG(H).

D��������� 4.27. If A and B are subsets of a group G, we de�ne AB := {ab |a 2 A, b 2 B}.
T������ 4.28. If H is a subgroup of a group G and K is a subgroup of NG(H), then KH is a
subgroup of NG(H).

D��������� 4.29. Let G be a group acting on a set X. If x 2 X, then the subset of X de�ned
by Gx := {g · x |g 2 G} is called the orbit of x under G.

T������ 4.30. If G is a group acting on a set X, then the set of orbits forms a partition of X.

D��������� 4.31. When G acts on itself (or on its subgroups) by conjugation, the orbits
are called conjugacy classes (or conjugacy classes of subgroups) and two elements in the
same conjugacy class are said to be conjugate.

P������ 4.32. Determine the conjugacy classes of S3. Determine the conjugacy classes of
subgroups of S3.

T������ 4.33. Two elements of Sn are conjugate if and only if they have the same cycle type.

T������ 4.34. If n � 3, then Z(Sn) = {1}.
P������ 4.35. Determine the conjugacy classes of D4.

4.4. The Orbit-stabilizer Theorem.

R����� 4.36. Suppose that G acts on X. Observe that, for any orbit O, the action of G on
X restricts to an action of G on O, and this latter action is now transitive. In this way, many
questions about group actions can be reduced to questions about transitive group actions.

T������ 4.37 (Orbit-stabilizer Theorem). Let G be a group acting on a set X. Then for every
x 2 X, |Gx | = |G : Gx |. [Hint: construct a bijection from G/Gx to Gx.]

N������� 4.38. For a group G acting on a set X, we de�ne Fix(G) to be the set of all x 2 X
such that x �xed by every element of G, i.e. Fix(G) is the set of �xed points of G. The
elements of Fix(G) represent the orbits of G of size 1.

T������ 4.39. Let G be a �nite group acting on a �nite set X. Let O1, . . . , On be the orbits of G
not contained in Fix(G), if any, and let x1, . . . xn 2 X be such that xi 2 Oi . Then

|X | = | Fix(G)| +
n
X

i=1
|G : Gxi |.

[Hint: recall that the orbits of G partition X.]
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T������ 4.40. Let P be a group of order pk for some prime p. If P acts on a �nite set X, then
| Fix(P)| ⌘ |X | modulo p.

T������ 4.41. If P is a group of order pk for some prime p, then Z(P) is nontrivial. [Hint: let P
act on itself by conjugation. What is Fix(P) with respect to this action?]

T������ 4.42. If P is group of order p2 for some prime p, then P is abelian.

P������ 4.43 (The Class Equation). Let G be a �nite group. LetC1, . . . , Cn be the conjugacy
classes of G not contained in Z(G), if any, and let x1, . . . xn 2 G be such that xi 2 Ci . Explain
how Theorem 4.39 can be used to quickly deduce that

|G | = |Z(G)| +
n
X

i=1
|G : CG(xi)|.

T������ 4.44. Let G be a �nite group. If p is a prime dividing |G |, then p divides |CG(g)| for
some nontrivial g 2 G. [Hint: class equation.]

T������ 4.45 (Cauchy’s Theorem). Let G be a �nite group. If p is a prime dividing |G |, then
G has an element of order p. [Hint: consider a minimal counterexample, and �rst show that
it must have a nontrivial center.]

T������ 4.46. Let p be a prime. If G is a �nite group, then G is a p-group (see De�nition 3.46)
if an only if |G | = pk for some k 2 N.

P������ 4.47. We should always be asking if we can generalize things. Make at least two
conjectures related to generalizing (or not being able to generalize) Cauchy’s Theorem.
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