3. Subgroups, cosets, quotients, and morphisms

"Divide each difficulty into as many parts as is feasible and necessary to resolve it."

- René Descartes

3.1. Subgroups.

Definition 3.1. A subset H of a group G is called a subgroup of G if for all $h_{1}, h_{2} \in H$
(1) $h_{1} h_{2} \in H$,
(2) $h_{1}^{-1} H$, and
(3) $1_{G} \in H$.

We write $H \leq G$ to mean that H is a subgroup of G. A subgroup of G is proper, denoted $H<G$, if it is not equal to G. A subgroup of G is nontrivial if it has more than 1 element.

Remark 3.2. We have seen several examples of subgroups already. For example, $\mathrm{SL}_{n}(F)<$ $\mathrm{GL}_{n}(F)$, and $C_{4}<D_{4}<S_{4}$.

Рroblem 3.3. Find all subgroups of S_{3}. Illustrate how they are contained in each other.
Рroblem 3.4. Find all subgroups of \mathbb{Z}_{12}. Illustrate how they are contained in each other.
Рroblem 3.5. Find examples of each of the following in S_{4} :
(1) two different proper nontrivial cyclic subgroups,
(2) a proper noncyclic abelian subgroup, and
(3) two different proper nonabelian subgroups.

Theorem 3.6. Let G be a group, and let $g \in G$. The set $\left\{g^{k} \mid k \in \mathbb{Z}\right\}$ is a subgroup of G consisting of exactly $|g|$ elements (interpreted in the obvious way when $|g|=\infty$).

Definition 3.7. Let G be a group, and let $g \in G$. The set $\langle g\rangle:=\left\{g^{k} \mid k \in \mathbb{Z}\right\}$ is called the (cyclic) subgroup generated by g.

Remark 3.8. Revisiting Definition 2.21, we see that a group G is cyclic if and only if $G=\langle g\rangle$ for some $g \in G$.

Theorem 3.9. Every subgroup of a cyclic group is cyclic.
Theorem 3.10. Let G be a group. Prove that the intersection of any collection of subgroups of G is also subgroup.

Definition 3.11. Let G be a group, and let $S \subseteq G$. The subgroup generated by S, denoted $\langle S\rangle$, is the intersection of all subgroups of G that contain S.

Remark 3.12. Note that every subgroup of G that contains S must also contain $\langle S\rangle$, so $\langle S\rangle$ is the smallest subgroup of G containing S. Also, when S consists of a single element, we now have two definitions for $\langle S\rangle$, see Definition 2.21, but they do agree.

Problem 3.13. Show that D_{4} is generated by two elements.
Definition 3.14. Let G be a group. Define the center of G, denoted $Z(G)$, to be the set $Z(G):=\{h \in G \mid h g=g h$ for every $g \in G\}$, and for each $g \in G$, define the centralizer of g in G to be $C_{G}(g):=\{h \in G \mid h g=g h\}$.

Theorem 3.15. Let G be a group, and let $g \in G$. Then $C_{G}(g)$ and $Z(G)$ are subgroups of G, and $C_{G}(g)$ contains both $\langle g\rangle$ and $Z(G)$.

Problem 3.16. Let I be the $n \times n$ identity matrix. Define S to be the subset of $\mathrm{GL}_{n}(F)$ consisting of the diagonal matrices where every entry on the main diagonal is the same (and nonzero), i.e. $S:=\left\{A \in \mathrm{GL}_{n}(F) \mid A=c I\right.$ for some $\left.c \in F\right\}$. Show that S is subgroup and that $S \leq \mathrm{Z}\left(\mathrm{GL}_{n}(F)\right)$. Is there any chance that $S=\mathrm{Z}\left(\mathrm{GL}_{n}(F)\right)$?

Definition 3.17. The direct product of groups $\left(G, *_{G}\right)$ and $\left(H, *_{H}\right)$ is $(G \times H, *)$ where $G \times H:=\{(g, h) \mid g \in G$ and $h \in H\}$ and $\left(g_{1}, h_{1}\right) *\left(g_{2}, h_{2}\right):=\left(g_{1} *_{G} g_{2}, h_{1} *_{H} h_{2}\right)$.

Theorem 3.18. If G and H are groups, then $G \times H$ is a group.
Problem 3.19. If G and H are groups, show that $\left\{\left(g, 1_{H}\right) \mid g \in G\right\}$ and $\left\{\left(1_{G}, h\right) \mid h \in H\right\}$ are subgroups of $G \times H$.

3.2. Cosets and normal subgroups.

Definition 3.20. Let G be a group and H a subgroup. For every $g \in G$, the set $g H:=$ $\{g h \mid h \in H\}$ is called a left coset of H in G, and $H g:=\{h g \mid h \in H\}$ is called a right coset of H in G. The collection of all left cosets of H in G will be denoted G / H; where as, $H \backslash G$ denotes the collection of all right cosets of H in G.

Problem 3.21. Consider the subgroups $H:=\langle(12)\rangle$ and $N:=\langle(123)\rangle$ of S_{3}.
(1) Determine S_{3} / H and $H \backslash S_{3}$. Is $S_{3} / H=H \backslash S_{3}$? Is $\left|S_{3} / H\right|=\left|H \backslash S_{3}\right|$?
(2) Determine S_{3} / N and $N \backslash S_{3}$. Is $S_{3} / N=N \backslash S_{3}$? Is $\left|S_{3} / N\right|=\left|N \backslash S_{3}\right|$?

Definition 3.22. A subgroup N of a group G is said to be normal if $g N=N g$ for all $g \in G$.
Theorem 3.23. A subgroup N of a group G is normal if and only if $g n g^{-1} \in N$ for all $n \in N$ and all $g \in G$.

Theorem 3.24. Every subgroup of an abelian group is normal.
Problem 3.25. If $n \geq 1$, then $n \mathbb{Z}:=\{n m \mid m \in \mathbb{Z}\}$ is a subgroup of \mathbb{Z}. (You don't need to prove this.) Describe the left cosets (which are the same as the right cosets) of $n \mathbb{Z}$ in \mathbb{Z}.

Theorem 3.26. Let G be a group, H a subgroup, and $g, g_{1}, g_{2} \in G$. Then
(1) $g H=(g h) H$ for every $h \in H$, and
(2) $g_{1} H=g_{2} H$ if and only if $g_{2}^{-1} g_{1} \in H$.

Definition 3.27. A partition of a set X is a collection P of nonempty subsets of X such that every element of X is in exactly one element of P.

Remark 3.28. If $X=\{a, b, c, d, e, f\}$, then $\{\{a, c\},\{e\},\{b, d, f\}\}$ is a partition of X, but $\{\{a, c\},\{e\},\{b, f\}\}$ and $\{\{a, c, d\},\{e\},\{b, d, f\}\}$ are not. A partition $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ of a set X can be visualized as follows.

Theorem 3.29. If H is a subgroup of G, then the set of left cosets G / H forms a partition of G.
Remark 3.30. It is also true that the set of right cosets $H \backslash G$ forms a partition of G, though quite possibly a different one than G / H.

Fact 3.31. By definition, two sets A and B have the same cardinality ("size"), if there is a one-to-one and onto function, i.e. a bijection, from A to B.

Theorem 3.32 (Lagrange's Theorem). Let G be a group. If $H \leq G$ and A is any left or right coset of H, then $|A|=|H|$. Consequently, $|G|=|G / H| \cdot|H|$ when G is finite.

Remark 3.33. Lagrange's Theorem tells us that the partition of a group G determined by the left cosets of a subgroup H looks as follows.

Additionally, it should be rather clear that $|G|=|H \backslash G| \cdot|H|$ and $|G / H|=|H \backslash G|$, even though it is often the case that $G / H \neq H \backslash G$.

Theorem 3.34. The order of each element of a finite group divides the order of the group.
Theorem 3.35. Every group of prime order is cyclic.
Definition 3.36. Let H a subgroup of a group G. Define the index of H in G, denoted $|G: H|$, to be $|G: H|:=|G / H|=|H \backslash G|$.

Theorem 3.37. Every subgroup of index 2 in a group must be normal.

3.3. Quotient groups.

Theorem 3.38. Let N be a normal subgroup of G. If $g_{1}, g_{2}, a_{1}, a_{2} \in G$ are such that $g_{1} N=a_{1} N$ and $g_{2} N=a_{2} N$, then
(1) $\left(g_{1} g_{2}\right) N=\left(a_{1} a_{2}\right) N$, and
(2) $g_{1}^{-1} N=a_{1}^{-1} N$.

Remark 3.39. The previous theorem is saying that for all $a_{1} \in g_{1} N$ and all $a_{2} \in g_{2} N$ the product $a_{1} a_{2}$ always lies in the coset $\left(g_{1} g_{2}\right) N$ (see the picture below) and the inverse a_{1}^{-1} always lies in the coset $g_{1}^{-1} N$. Thus, when N is normal, this allows us to give the coset space G / N the structure of a group.

Definition 3.40 (Quotient groups). Let N be a normal subgroup of G. Then the coset space G / N has the structure of a group where
(1) $(a N) \cdot(b N)=(a b) N$,
(2) $(a N)^{-1}=\left(a^{-1}\right) N$, and
(3) $N=1 N$ is the identity.

Remark 3.41. If G is an group with normal subgroup N, then many properties of G transfer to the group G / N. For example, if G is abelian, then G / N is also abelian. Additionally, properties for N and G / N can sometimes be combined to deduce properties of G, but this is usually a bit more complicated.

Theorem 3.42. If G is a cyclic group and N is a subgroup, then both N and G / N are cyclic.
Рroblem 3.43. Find a group G with a normal subgroup N such that both N and G / N are cyclic but G is not even abelian.

Definition 3.44. A subgroup H of a group G is called central if $H \leq Z(G)$. Note that central subgroups are necessarily normal.

Theorem 3.45. If N is a central subgroup of G and G / N is cyclic, then G is abelian.
Definition 3.46. Let p be a prime. A group is a p-group if the order of every element is a power of p; that is, for every element g, there is some $k \in \mathbb{N}$ such that $|g|=p^{k}$.

Remark 3.47. Note that D_{4} is a 2-group, and by Lagrange's Theorem, every group of prime-power order must be a p-group. Can you think of an infinite p-group?

Theorem 3.48. Let p be a prime, and let N be a normal subgroup of G. If N and G / N are p-groups, then G is also a p-group.

Remark 3.49. Let G be a finite group. We know, by Theorem 3.34, that the order of every element of G divides $|G|$. Now, suppose that some prime p divides $|G|$; does this imply that G has an element of order p ? The next few theorems start to explore this question.

Theorem 3.50. Let G be a finite cyclic group. If p is a prime dividing $|G|$, then G has an element of order p.

Definition 3.51. Let $n \in \mathbb{N}$. A group G is said to be n-divisible if for every $g \in G$ there is some $x \in G$ such that $g=x^{n}$, i.e. the function $G \rightarrow G: x \mapsto x^{n}$ is surjective. In additive notation, the condition $g=x^{n}$ becomes $g=n x$, justifying the name n-divisible.

Theorem 3.52. Let G be a finite abelian group, and let p be a prime. If G has no elements of order p, then G is p-divisible.

Theorem 3.53. Let G be a finite group and p be a prime. If N is a central subgroup of G and G / N has an element of order p, then G has an element of order p. [Hint: either N has an element of order p or it does not. In the latter case, try to use the previous theorem.]

Theorem 3.54. Let G be a finite abelian group. If p is a prime dividing $|G|$, then G has an element of order p. [Hint: this theorem is hard. Solving it will bring much honor and glory! Towards a contradiction, assume that the theorem is false. Consider using the following technique of exploring a "minimal counterexample." Let \mathcal{A} be the set of all counterexamples to the theorem. By the Well-ordering Principle, \mathcal{A} contains a group G for which $|G|$ is minimal, i.e. G is a counterexample to the theorem, but every group of smaller order than G satisfies the theorem. Now, to find a contradiction, show that G must have a proper nontrivial subgroup N, and then study N and G / N.]

Remark 3.55. The previous three theorems raise many questions. Is it true that every finite group without elements of order p is p-divisible? What about infinite groups? Is it necessary that N be central in the statement of Theorem 3.53? If p is a prime dividing the order of an arbitrary finite group, must the group have an element of order p ?

Рroblem 3.56. Generalize Theorem 3.54 in some way.

3.4. Morphisms.

Definition 3.57. Let G and H be groups. A function $\varphi: G \rightarrow H$ is called a homomorphism if $\varphi\left(g_{1} g_{2}\right)=\varphi\left(g_{1}\right) \varphi\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$. A bijective homomorphism from G to H is called an isomorphism, and in this case, G and H are said to be isomorphic, denoted $G \cong H$. An isomorphism from G to G is called an automorphism of G.

Remark 3.58. In the equation $\varphi\left(g_{1} g_{2}\right)=\varphi\left(g_{1}\right) \varphi\left(g_{2}\right)$, the product $g_{1} g_{2}$ is computed according to the definition of multiplication in G; where as, the product $\varphi\left(g_{1}\right) \varphi\left(g_{2}\right)$ is computed according to the definition of multiplication in \boldsymbol{H}.

Theorem 3.59. If $\varphi: G \rightarrow H$ is a homomorphism of groups, then for all $g \in G, \varphi\left(g^{-1}\right)=\varphi(g)^{-1}$ and $\varphi\left(1_{G}\right)=1_{H}$.

Theorem 3.60. A group G is abelian if and only if the inversion map $G \rightarrow G: x \mapsto x^{-1}$ is an automorphism.

Remark 3.61. Recall that any bijection f from a set X to a set Y has an inverse defined by $f^{-1} \circ f=\operatorname{id}_{X}$ and $f \circ f^{-1}=\operatorname{id}_{Y}$.

Theorem 3.62. The inverse of an isomorphism between two groups is also an isomorphism.
Remark 3.63. A homomorphism from G to H translates the group operations of G to those of H, and this transfers various properties of G to H. This is especially true when $G \cong H$ as, in this case, G and H are for all intents and purposes the same group, except that the elements have different names.

Theorem 3.64. Let $\varphi: G \rightarrow H$ be a surjective homomorphism of groups.
(1) If G is cyclic, then H is cyclic.
(2) If G is abelian, then H is abelian.

Remark 3.65. If $\varphi: G \rightarrow H$ is an isomorphism of groups, the previous two theorems can be combined to see that G is cyclic if and only if H is cyclic and that G is abelian if and only if H is abelian.

Theorem 3.66. Let $\varphi: G \rightarrow H$ be a homomorphism of groups. If $g \in G$ has finite order, then $|\varphi(g)|$ divides $|g|$, and if, additionally, φ is injective, then $|\varphi(g)|=|g|$.

Theorem 3.67. Every two infinite cyclic groups are isomorphic, and two finite cyclic groups are isomorphic if and only if they have the same cardinality.

Problem 3.68. Show that \mathbb{Z} contains (many) proper subgroups that are isomorphic \mathbb{Z}.
Definition 3.69. The quaternion group is the group $Q_{8}:=\{\{ \pm 1, \pm i, \pm j, \pm k\}, \cdot,-1,1\}$ where

- $(-1)(-1)=1$,
- $g(-1)=(-1) g=-g$ for all $g \in Q_{8}$,
- $i^{2}=j^{2}=k^{2}=-1$, and
- $i j=k$.

Note that these axioms imply that 1 is the identity and that $g^{-1}=-g$ for all $g \in Q_{8}-\{ \pm 1\}$.
Problem 3.70. Show that Q_{8} is a nonabelian group of order 8 that is not isomorphic to D_{4}.

Notation 3.71. There are two groups attached to every field F : the elements of F under addition, denoted F^{+}, and the nonzero elements of F under multiplication, denoted F^{\times}.

Рroblem 3.72. Show that $\mathbb{R}^{+} \not \not \mathbb{R}^{\times}$. However, if H is the subgroup of \mathbb{R}^{\times}consisting of the positive real numbers, show that $\mathbb{R}^{+} \cong H$.

Problem 3.73. Let F be any field. Find two subgroups of $\mathrm{GL}_{2}(F)$ isomorphic to F^{+}and F^{\times}. [Hint: you can restrict your attention to upper triangular matrices.]

Definition 3.74. Let G and H be groups, and let $\varphi: G \rightarrow H$ be a homomorphism. Define the kernel of φ to be ker $\varphi:=\{g \in G \mid \varphi(g)=1\}$. For any subset $A \subseteq G$, define the image of A to be $\varphi(A):=\{h \in H \mid h=\varphi(a)$ for some $a \in A\}$.

Theorem 3.75. If $\varphi: G \rightarrow H$ is a homomorphism of groups, then the kernel of φ is a normal subgroup of G, and the image of any subgroup of G is a subgroup of H.

Remark 3.76. The previous theorem states that kernels of homomorphisms are normal subgroups, but the converse is also true: every normal subgroup is the kernel of some homomorphism. Indeed, if $N \unlhd G$, then the $\operatorname{map} \varphi: G \rightarrow G / N: g \mapsto g N$ is a (surjective) homomorphism with kernel equal to N.

Theorem 3.77. A homomorphism of groups is injective if and only if the kernel is trivial.
Theorem 3.78 (First Isomorphism Theorem). If $\varphi: G \rightarrow H$ is a surjective homomorphism of groups, then $G / \operatorname{ker} \varphi \cong H$. [Hint: Use φ to define a related function from $G / \operatorname{ker} \varphi$ to H.]

Remark 3.79. If $\varphi: G \rightarrow H$ is a homomorphism of groups, then $\varphi: G \rightarrow \varphi(G)$ is a surjective homomorphism, so $G / \operatorname{ker} \varphi \cong \varphi(G)$. In words, " G modulo the kernel is isomorphic to the image." Setting $K:=\operatorname{ker} \varphi$, the picture is roughly as follows.

Problem 3.80. Let F be any field. Show that $\mathrm{SL}_{n}(F)$ is normal in $\mathrm{GL}_{n}(F)$ by showing that $\mathrm{SL}_{n}(F)$ is the kernel of a homomorphism from $\mathrm{GL}_{n}(F)$ to another group. Use this homomorphism to describe the quotient group $\mathrm{GL}_{n}(F) / \mathrm{SL}_{n}(F)$.

