3. SUBGROUPS, COSETS, QUOTIENTS, AND MORPHISMS

“Divide each difficulty into as many parts as is feasible and necessary to resolve it.”
- René Descartes

3.1. Subgroups.

DEerINITION 3.1. A subset H of a group G is called a subgroup of G if for all hy, hy € H

(1) hih; € H,

(2) hi'H, and

(3) 1 € H.
We write H < G to mean that H is a subgroup of G. A subgroup of G is proper, denoted
H < G, ifitis not equal to G. A subgroup of G is nontrivial if it has more than 1 element.

RemARK 3.2. We have seen several examples of subgroups already. For example, SL,,(F) <
GLH(P), and C4 < Dy < 54.

ProsLEm 3.3. Find all subgroups of Ss. Illustrate how they are contained in each other.
ProsLEM 3.4. Find all subgroups of Zj,. lllustrate how they are contained in each other.

ProsLEM 3.5. Find examples of each of the following in Sy:
(1) two different proper nontrivial cyclic subgroups,
(2) a proper noncyclic abelian subgroup, and
(3) two different proper nonabelian subgroups.

TaEOREM 3.6. Let G be a group, and let ¢ € G. The set {¢|k € Z} is a subgroup of G consisting
of exactly |g| elements (interpreted in the obvious way when |g| = o).

DEerINITION 3.7. Let G be a group, and let ¢ € G. The set (g) = {gklk € 7} is called the
(cyclic) subgroup generated by g.

ReMARK 3.8. Revisiting Definition 2.21, we see that a group G is cyclicif and only if G = (g)
for some g € G.

THEOREM 3.9. Every subgroup of a cyclic group is cyclic.

Taeorem 3.10. Let G be a group. Prove that the intersection of any collection of subgroups of G
is also subgroup.

DeriNiTION 3.11. Let G be a group, and let S C G. The subgroup generated by S, denoted
(S), is the intersection of all subgroups of G that contain S.

Remark 3.12. Note that every subgroup of G that contains S must also contain (S), so (S)
is the smallest subgroup of G containing S. Also, when S consists of a single element, we
now have two definitions for (S), see Definition 2.21, but they do agree.
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ProsLEM 3.13. Show that D, is generated by two elements.

DEerINITION 3.14. Let G be a group. Define the center of G, denoted Z(G), to be the set
Z(G) = {h € Glhg=gh for every ¢ € G}, and for each ¢ € G, define the centralizer of g in
G tobe Cg(g) :=={h € Glhg = gh}.

THEOREM 3.15. Let G be a group, and let g € G. Then C;(g) and Z(G) are subgroups of G, and
Ci(g) contains both (g) and Z(G).

ProBLEM 3.16. Let I be the n X n identity matrix. Define S to be the subset of GL,(F)
consisting of the diagonal matrices where every entry on the main diagonal is the same
(and nonzero), i.e. S := {A € GL,(F)|A = cI for some c € F}. Show that S is subgroup and
that S < Z(GL,(F)). Is there any chance that S = Z(GL,(F))?

DerINITION 3.17. The direct product of groups (G, *g) and (H, *y) is (G X H, *) where
G x H:={(g,h)lg €Gand h € H}and (g1, 1) * (82, h2) := (81 *G g2, I *H h2).

Tueorem 3.18. If G and H are groups, then G X H is a group.

ProsLeEm 3.19. If G and H are groups, show that {(g,1x)lg € G} and {(1g, h)|h € H} are
subgroups of G X H.

3.2. Cosets and normal subgroups.

DEerINITION 3.20. Let G be a group and H a subgroup. For every ¢ € G, the set gH :=
{gh|h € H} is called a left coset of H in G, and Hg := {hg|h € H} is called a right coset
of H in G. The collection of all left cosets of H in G will be denoted G/H; where as, H\G
denotes the collection of all right cosets of H in G.

ProsLEM 3.21. Consider the subgroups H :={(12)) and N := ((123)) of Ss.
(1) Determine S3/H and H\Ss. Is S3/H = H\S3? Is |S3/H| = |H\S3|?
(2) Determine S3/N and N\Ss. Is S3/N = N\S3? Is |S3/N| = [N\S3|?

DEerINITION 3.22. A subgroup N of a group G is said to be normalif gN = Ng forall g € G.

Tueorem 3.23. A subgroup N of a group G is normal if and only if gng™ € N foralln € N
and all g € G.

THEOREM 3.24. Every subgroup of an abelian group is normal.

ProBLEM 3.25. If n > 1, then nZ := {nm|m € Z} is a subgroup of Z. (You don’t need to prove
this.) Describe the left cosets (which are the same as the right cosets) of nZ in Z.

TueoOREM 3.26. Let G be a group, H a subgroup, and g, g1, §2 € G. Then
(1) gH = (gh)H for every h € H, and

(2) g1H = gH ifand only if g;'¢1 € H.
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DEerINITION 3.27. A partition of a set X is a collection P of nonempty subsets of X such
that every element of X is in exactly one element of P.

Remark 3.28. If X = {a,b,c,d,e, f}, then {{a,c}, {e}, {b,d, f}} is a partition of X, but
{{a,c}, {e}, {b, f}} and {{a,c,d}, {e}, {b,d, f}} are not. A partition {A1, Ay, A3, As, As} of
a set X can be visualized as follows.

THEOREM 3.29. If H is a subgroup of G, then the set of left cosets G/H forms a partition of G.

ReMARK 3.30. It is also true that the set of right cosets H\G forms a partition of G, though
quite possibly a different one than G/H.

Facr 3.31. By definition, two sets A and B have the same cardinality (“size”), if there is a
one-to-one and onto function, i.e. a bijection, from A to B.

Tueorem 3.32 (Lagrange’s Theorem). Let G be a group. If H < G and A is any left or right
coset of H, then |A| = |H|. Consequently, |G| = |G/H| - |H| when G is finite.

RemARk 3.33. Lagrange’s Theorem tells us that the partition of a group G determined by
the left cosets of a subgroup H looks as follows.

G

Additionally, it should be rather clear that |G| = |[H\G| - |H| and |G/H| = |[H\G|, even
though it is often the case that G/H # H\G.

THeOREM 3.34. The order of each element of a finite group divides the order of the group.
THeoRrREM 3.35. Every group of prime order is cyclic.

DeriNiTION 3.36. Let H a subgroup of a group G. Define the index of H in G, denoted
|G : H|,tobe |G : H| := |G/H| = |[H\G]|.

THEOREM 3.37. Every subgroup of index 2 in a group must be normal.
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3.3. Quotient groups.

THEOREM 3.38. Let N be a normal subgroup of G. If g1, §2, a1, a2 € G are such that g1N = a1 N
and goN = apN, then

(1) (8182)N = (a1a2)N, and

(2) g/'N =a]'N.

ReMARK 3.39. The previous theorem is saying that for all a; € g1N and all a, € g2N the
product a1a; always lies in the coset (g1¢2)N (see the picture below) and the inverse a; 1
always lies in the coset g1 IN. Thus, when N is normal, this allows us to give the coset

space G/N the structure of a group.

G

(g182)N 8182

DeriNiTION 3.40 (Quotient groups). Let N be a normal subgroup of G. Then the coset
space G/N has the structure of a group where

(1) @N) - (bN) = (ab)N,

2) (aN)~! = (a~1)N, and

(3) N = 1N is the identity.

ReMARK 3.41. If G is an group with normal subgroup N, then many properties of G trans-
ter to the group G/N. For example, if G is abelian, then G/N is also abelian. Additionally,
properties for N and G/N can sometimes be combined to deduce properties of G, but this
is usually a bit more complicated.

THEOREM 3.42. If G is a cyclic group and N is a subgroup, then both N and G/N are cyclic.

ProsLEM 3.43. Find a group G with a normal subgroup N such that both N and G/N are
cyclic but G is not even abelian.

DerINITION 3.44. A subgroup H of a group G is called central if H < Z(G). Note that
central subgroups are necessarily normal.

THEOREM 3.45. If N is a central subgroup of G and G/N is cyclic, then G is abelian.
DEFINITION 3.46. Let p be a prime. A group is a p-group if the order of every element is a

power of p; that is, for every element g, there is some k € N such that |g| = p*.
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Remark 3.47. Note that Dy is a 2-group, and by Lagrange’s Theorem, every group of
prime-power order must be a p-group. Can you think of an infinite p-group?

THeOREM 3.48. Let p be a prime, and let N be a normal subgroup of G. If N and G /N are p-groups,
then G is also a p-group.

REMARK 3.49. Let G be a finite group. We know, by Theorem 3.34, that the order of every
element of G divides |G|. Now, suppose that some prime p divides |G|; does this imply
that G has an element of order p? The next few theorems start to explore this question.

THEOREM 3.50. Let G be a finite cyclic group. If p is a prime dividing |G|, then G has an element
of order p.

DeriNiTION 3.51. Let n € N. A group G is said to be n-divisible if for every ¢ € G there is
some x € G such that g = x", i.e. the function G — G : x = x" is surjective. In additive
notation, the condition g = x" becomes ¢ = nx, justifying the name n-divisible.

THEOREM 3.52. Let G be a finite abelian group, and let p be a prime. If G has no elements of order
p, then G is p-divisible.

Tueorem 3.53. Let G be a finite group and p be a prime. If N is a central subgroup of G and G/N
has an element of order p, then G has an element of order p. [Hint: either N has an element of
order p or it does not. In the latter case, try to use the previous theorem.]

THEOREM 3.54. Let G be a finite abelian group. If p is a prime dividing |G|, then G has an element
of order p. [Hint: this theorem is hard. Solving it will bring much honor and glory! Towards
a contradiction, assume that the theorem is false. Consider using the following technique
of exploring a “minimal counterexample.” Let A be the set of all counterexamples to the
theorem. By the Well-ordering Principle, A contains a group G for which |G| is minimal,
i.e. G is a counterexample to the theorem, but every group of smaller order than G satisfies
the theorem. Now, to find a contradiction, show that G must have a proper nontrivial
subgroup N, and then study N and G/N ]

ReMARK 3.55. The previous three theorems raise many questions. Is it true that every fi-
nite group without elements of order p is p-divisible? What about infinite groups? Is it
necessary that N be central in the statement of Theorem 3.53? If p is a prime dividing the
order of an arbitrary finite group, must the group have an element of order p?

ProBLEM 3.56. Generalize Theorem 3.54 in some way.
3.4. Morphisms.

DEerinITION 3.57. Let G and H be groups. A function ¢ : G — H is called a homomorphism
if p(g182) = p(g1)p(g2) for all g1, 2> € G. A bijective homomorphism from G to H is called
an isomorphism, and in this case, G and H are said to be isomorphic, denoted G = H. An
isomorphism from G to G is called an automorphism of G.
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ReMARK 3.58. In the equation ¢(g192) = ¢(g1)¢(g2), the product g1 g» is computed accord-
ing to the definition of multiplication in G; where as, the product ¢(g1)¢(g2) is computed
according to the definition of multiplication in H.

Tueorem 3.59. If ¢ : G — H is a homomorphism of groups, then forall ¢ € G, (g™ = p(g)~!
and p(1g) = 1g.

Tueorem 3.60. A group G is abelian if and only if the inversion map G — G : x = x lisan

automorphism.

RemARK 3.61. Recall that any bijection f from a set X to a set Y has an inverse defined by
flof=idxand fo f~! =idy.

THEOREM 3.62. The inverse of an isomorphism between two groups is also an isomorphism.

REMARK 3.63. A homomorphism from G to H translates the group operations of G to those
of H, and this transfers various properties of G to H. This is especially true when G = H
as, in this case, G and H are for all intents and purposes the same group, except that the
elements have different names.

THEOREM 3.64. Let ¢ : G — H be a surjective homomorphism of groups.

(1) If G is cyclic, then H is cyclic.
(2) If G is abelian, then H is abelian.

ReMARK 3.65. If ¢ : G — H is an isomorphism of groups, the previous two theorems can
be combined to see that G is cyclic if and only if H is cyclic and that G is abelian if and
only if H is abelian.

THEOREM 3.66. Let ¢ : G — H be a homomorphism of groups. If § € G has finite order, then
lp(g)| divides |g|, and if, additionally, ¢ is injective, then |p(g)| = 1.

THEOREM 3.67. Every two infinite cyclic groups are isomorphic, and two finite cyclic groups are
isomorphic if and only if they have the same cardinality.

ProsLEM 3.68. Show that Z contains (many) proper subgroups that are isomorphic Z.

DEerINITION 3.69. The quaternion group is the group Qg := {{il, +i,+j,+k}, oL 1} where
e (-1)(-1)=1,
e o(-1)=(-1)g=-gforall g € Qs,
° i2=j2=k2=—1,and
o ij=k.
Note that these axioms imply that 1 is the identity and that ¢™! = —¢ forall ¢ € Qg — {%1}.

ProsLEM 3.70. Show that Qg is a nonabelian group of order 8 that is not isomorphic to Djy.
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NortatioN 3.71. There are two groups attached to every field F: the elements of F under
addition, denoted F*, and the nonzero elements of F under multiplication, denoted F*.

ProsLEM 3.72. Show that R* # R*. However, if H is the subgroup of R* consisting of the
positive real numbers, show that R* = H.

ProsLEM 3.73. Let F be any field. Find two subgroups of GLy(F) isomorphic to F* and F*.
[Hint: you can restrict your attention to upper triangular matrices.]

DeriNiTION 3.74. Let G and H be groups, and let ¢ : G — H be a homomorphism. Define
the kernel of ¢ to be ker ¢ := {g € G|p(g) = 1}. For any subset A C G, define the image of
Atobe @(A) :={h € H|h = ¢(a) for some a € A}.

Tueorem 3.75. If ¢ : G — H is a homomorphism of groups, then the kernel of ¢ is a normal
subgroup of G, and the image of any subgroup of G is a subgroup of H.

ReMARK 3.76. The previous theorem states that kernels of homomorphisms are normal
subgroups, but the converse is also true: every normal subgroup is the kernel of some
homomorphism. Indeed, if N < G, then the map ¢ : G — G/N : g = gN is a (surjective)
homomorphism with kernel equal to N.

TueOREM 3.77. A homomorphism of groups is injective if and only if the kernel is trivial.

THEOREM 3.78 (First Isomorphism Theorem). If ¢ : G — H is a surjective homomorphism of
groups, then G/ ker ¢ = H. [Hint: Use ¢ to define a related function from G/ ker ¢ to H.]

ReMARK 3.79. If ¢ : G — H is a homomorphism of groups, then ¢ : G — ¢(G) is a surjec-
tive homomorphism, so G/ ker ¢ = ¢(G). In words, “G modulo the kernel is isomorphic
to the image.” Setting K := ker ¢, the picture is roughly as follows.

H
G »(G)
82K ] > e p(g2)
g1k ] sl e os1)
K ] s o1

P

ProsLEM 3.80. Let F be any field. Show that SL,,(F) is normal in GL,(F) by showing that
SL,(F) is the kernel of a homomorphism from GL,(F) to another group. Use this homo-
morphism to describe the quotient group GL,(F)/SL,(F).
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