
3. S��������, ������, ���������, ��� ���������
“Divide each di�culty into as many parts as is feasible and necessary to resolve it.”

- René Descartes

3.1. Subgroups.

D��������� 3.1. A subset H of a group G is called a subgroup of G if for all h1, h2 2 H
(1) h1h2 2 H,
(2) h�1

1 H, and
(3) 1G 2 H.

We write H  G to mean that H is a subgroup of G. A subgroup of G is proper, denoted
H < G, if it is not equal to G. A subgroup of G is nontrivial if it has more than 1 element.

R����� 3.2. We have seen several examples of subgroups already. For example, SLn(F) <
GLn(F), and C4 < D4 < S4.

P������ 3.3. Find all subgroups of S3. Illustrate how they are contained in each other.

P������ 3.4. Find all subgroups of Z12. Illustrate how they are contained in each other.

P������ 3.5. Find examples of each of the following in S4:
(1) two di�erent proper nontrivial cyclic subgroups,
(2) a proper noncyclic abelian subgroup, and
(3) two di�erent proper nonabelian subgroups.

T������ 3.6. Let G be a group, and let g 2 G. The set {gk |k 2 Z} is a subgroup of G consisting
of exactly |g | elements (interpreted in the obvious way when |g | = 1).

D��������� 3.7. Let G be a group, and let g 2 G. The set hgi := {gk |k 2 Z} is called the
(cyclic) subgroup generated by g.

R����� 3.8. Revisiting De�nition 2.21, we see that a group G is cyclic if and only if G = hgi
for some g 2 G.

T������ 3.9. Every subgroup of a cyclic group is cyclic.

T������ 3.10. Let G be a group. Prove that the intersection of any collection of subgroups of G
is also subgroup.

D��������� 3.11. Let G be a group, and let S ✓ G. The subgroup generated by S, denoted
hSi, is the intersection of all subgroups of G that contain S.

R����� 3.12. Note that every subgroup of G that contains S must also contain hSi, so hSi
is the smallest subgroup of G containing S. Also, when S consists of a single element, we
now have two de�nitions for hSi, see De�nition 2.21, but they do agree.
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P������ 3.13. Show that D4 is generated by two elements.

D��������� 3.14. Let G be a group. De�ne the center of G, denoted Z(G), to be the set
Z(G) := {h 2 G |hg=gh for every g 2 G}, and for each g 2 G, de�ne the centralizer of g in
G to be CG(g) := {h 2 G |h g = gh}.

T������ 3.15. Let G be a group, and let g 2 G. Then CG(g) and Z(G) are subgroups of G, and
CG(g) contains both hgi and Z(G).

P������ 3.16. Let I be the n ⇥ n identity matrix. De�ne S to be the subset of GLn(F)
consisting of the diagonal matrices where every entry on the main diagonal is the same
(and nonzero), i.e. S := {A 2 GLn(F)|A = cI for some c 2 F}. Show that S is subgroup and
that S  Z(GLn(F)). Is there any chance that S = Z(GLn(F))?

D��������� 3.17. The direct product of groups (G, ⇤G) and (H, ⇤H) is (G ⇥ H, ⇤) where
G ⇥ H := {(g , h)|g 2 G and h 2 H} and (g1, h1) ⇤ (g2, h2) := (g1 ⇤G g2, h1 ⇤H h2).

T������ 3.18. If G and H are groups, then G ⇥ H is a group.

P������ 3.19. If G and H are groups, show that {(g , 1H)|g 2 G} and {(1G , h)|h 2 H} are
subgroups of G ⇥ H.

3.2. Cosets and normal subgroups.

D��������� 3.20. Let G be a group and H a subgroup. For every g 2 G, the set gH :=
{gh |h 2 H} is called a left coset of H in G, and H g := {h g |h 2 H} is called a right coset

of H in G. The collection of all left cosets of H in G will be denoted G/H; where as, H\G
denotes the collection of all right cosets of H in G.

P������ 3.21. Consider the subgroups H := h(12)i and N := h(123)i of S3.
(1) Determine S3/H and H\S3. Is S3/H = H\S3? Is |S3/H | = |H\S3 |?
(2) Determine S3/N and N\S3. Is S3/N = N\S3? Is |S3/N | = |N\S3 |?

D��������� 3.22. A subgroup N of a group G is said to be normal if gN = N g for all g 2 G.

T������ 3.23. A subgroup N of a group G is normal if and only if gn g�1 2 N for all n 2 N
and all g 2 G.

T������ 3.24. Every subgroup of an abelian group is normal.

P������ 3.25. If n � 1, then nZ := {nm |m 2 Z} is a subgroup of Z. (You don’t need to prove
this.) Describe the left cosets (which are the same as the right cosets) of nZ in Z.

T������ 3.26. Let G be a group, H a subgroup, and g , g1, g2 2 G. Then
(1) gH = (gh)H for every h 2 H, and
(2) g1H = g2H if and only if g�1

2 g1 2 H.
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D��������� 3.27. A partition of a set X is a collection P of nonempty subsets of X such
that every element of X is in exactly one element of P.

R����� 3.28. If X = {a , b , c , d , e , f }, then �{a , c}, {e}, {b , d , f } is a partition of X, but
�{a , c}, {e}, {b , f } and �{a , c , d}, {e}, {b , d , f } are not. A partition {A1,A2,A3,A4,A5} of
a set X can be visualized as follows.

A1

A2

A3

A4

A5

X

T������ 3.29. If H is a subgroup of G, then the set of left cosets G/H forms a partition of G.

R����� 3.30. It is also true that the set of right cosets H\G forms a partition of G, though
quite possibly a di�erent one than G/H.

F��� 3.31. By de�nition, two sets A and B have the same cardinality (“size”), if there is a
one-to-one and onto function, i.e. a bijection, from A to B.

T������ 3.32 (Lagrange’s Theorem). Let G be a group. If H  G and A is any left or right
coset of H, then |A| = |H |. Consequently, |G | = |G/H | · |H | when G is �nite.

R����� 3.33. Lagrange’s Theorem tells us that the partition of a group G determined by
the left cosets of a subgroup H looks as follows.

H

g1H

g2H

...
G

Additionally, it should be rather clear that |G | = |H\G | · |H | and |G/H | = |H\G |, even
though it is often the case that G/H , H\G.

T������ 3.34. The order of each element of a �nite group divides the order of the group.

T������ 3.35. Every group of prime order is cyclic.

D��������� 3.36. Let H a subgroup of a group G. De�ne the index of H in G, denoted
|G : H |, to be |G : H | := |G/H | = |H\G |.

T������ 3.37. Every subgroup of index 2 in a group must be normal.
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3.3. Quotient groups.

T������ 3.38. Let N be a normal subgroup of G. If g1, g2, a1, a2 2 G are such that g1N = a1N
and g2N = a2N , then

(1) (g1 g2)N = (a1a2)N , and
(2) g�1

1 N = a�1
1 N .

R����� 3.39. The previous theorem is saying that for all a1 2 g1N and all a2 2 g2N the
product a1a2 always lies in the coset (g1 g2)N (see the picture below) and the inverse a�1

1
always lies in the coset g�1

1 N . Thus, when N is normal, this allows us to give the coset
space G/N the structure of a group.

N

g1N

g2N

(g1 g2)N

g1

g2

a1

a2

g1 g2 a1a2

...
G

D��������� 3.40 (Quotient groups). Let N be a normal subgroup of G. Then the coset
space G/N has the structure of a group where

(1) (aN) · (bN) = (ab)N ,
(2) (aN)�1 = (a�1)N , and
(3) N = 1N is the identity.

R����� 3.41. If G is an group with normal subgroup N , then many properties of G trans-
fer to the group G/N . For example, if G is abelian, then G/N is also abelian. Additionally,
properties for N and G/N can sometimes be combined to deduce properties of G, but this
is usually a bit more complicated.

T������ 3.42. If G is a cyclic group and N is a subgroup, then both N and G/N are cyclic.

P������ 3.43. Find a group G with a normal subgroup N such that both N and G/N are
cyclic but G is not even abelian.

D��������� 3.44. A subgroup H of a group G is called central if H  Z(G). Note that
central subgroups are necessarily normal.

T������ 3.45. If N is a central subgroup of G and G/N is cyclic, then G is abelian.

D��������� 3.46. Let p be a prime. A group is a p-group if the order of every element is a
power of p; that is, for every element g, there is some k 2 N such that |g | = pk .
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R����� 3.47. Note that D4 is a 2-group, and by Lagrange’s Theorem, every group of
prime-power order must be a p-group. Can you think of an in�nite p-group?

T������ 3.48. Let p be a prime, and let N be a normal subgroup of G. If N and G/N are p-groups,
then G is also a p-group.

R����� 3.49. Let G be a �nite group. We know, by Theorem 3.34, that the order of every
element of G divides |G |. Now, suppose that some prime p divides |G |; does this imply
that G has an element of order p? The next few theorems start to explore this question.

T������ 3.50. Let G be a �nite cyclic group. If p is a prime dividing |G |, then G has an element
of order p.

D��������� 3.51. Let n 2 N. A group G is said to be n-divisible if for every g 2 G there is
some x 2 G such that g = xn , i.e. the function G ! G : x 7! xn is surjective. In additive
notation, the condition g = xn becomes g = nx, justifying the name n-divisible.

T������ 3.52. Let G be a �nite abelian group, and let p be a prime. If G has no elements of order
p, then G is p-divisible.

T������ 3.53. Let G be a �nite group and p be a prime. If N is a central subgroup of G and G/N
has an element of order p, then G has an element of order p. [Hint: either N has an element of
order p or it does not. In the latter case, try to use the previous theorem.]

T������ 3.54. Let G be a �nite abelian group. If p is a prime dividing |G |, then G has an element
of order p. [Hint: this theorem is hard. Solving it will bring much honor and glory! Towards
a contradiction, assume that the theorem is false. Consider using the following technique
of exploring a “minimal counterexample.” Let A be the set of all counterexamples to the
theorem. By the Well-ordering Principle, A contains a group G for which |G | is minimal,
i.e. G is a counterexample to the theorem, but every group of smaller order than G satis�es
the theorem. Now, to �nd a contradiction, show that G must have a proper nontrivial
subgroup N , and then study N and G/N .]

R����� 3.55. The previous three theorems raise many questions. Is it true that every �-
nite group without elements of order p is p-divisible? What about in�nite groups? Is it
necessary that N be central in the statement of Theorem 3.53? If p is a prime dividing the
order of an arbitrary �nite group, must the group have an element of order p?

P������ 3.56. Generalize Theorem 3.54 in some way.

3.4. Morphisms.

D��������� 3.57. Let G and H be groups. A function ' : G ! H is called a homomorphism

if '(g1 g2) = '(g1)'(g2) for all g1, g2 2 G. A bijective homomorphism from G to H is called
an isomorphism, and in this case, G and H are said to be isomorphic, denoted G � H. An
isomorphism from G to G is called an automorphism of G.
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R����� 3.58. In the equation '(g1 g2) = '(g1)'(g2), the product g1 g2 is computed accord-
ing to the de�nition of multiplication in G; where as, the product '(g1)'(g2) is computed
according to the de�nition of multiplication in H .

T������ 3.59. If ' : G ! H is a homomorphism of groups, then for all g 2 G, '(g�1) = '(g)�1

and '(1G) = 1H .

T������ 3.60. A group G is abelian if and only if the inversion map G ! G : x 7! x�1 is an
automorphism.

R����� 3.61. Recall that any bijection f from a set X to a set Y has an inverse de�ned by
f �1 � f = idX and f � f �1 = idY .

T������ 3.62. The inverse of an isomorphism between two groups is also an isomorphism.

R����� 3.63. A homomorphism from G to H translates the group operations of G to those
of H, and this transfers various properties of G to H. This is especially true when G � H
as, in this case, G and H are for all intents and purposes the same group, except that the
elements have di�erent names.

T������ 3.64. Let ' : G ! H be a surjective homomorphism of groups.
(1) If G is cyclic, then H is cyclic.
(2) If G is abelian, then H is abelian.

R����� 3.65. If ' : G ! H is an isomorphism of groups, the previous two theorems can
be combined to see that G is cyclic if and only if H is cyclic and that G is abelian if and
only if H is abelian.

T������ 3.66. Let ' : G ! H be a homomorphism of groups. If g 2 G has �nite order, then
|'(g)| divides |g |, and if, additionally, ' is injective, then |'(g)| = |g |.

T������ 3.67. Every two in�nite cyclic groups are isomorphic, and two �nite cyclic groups are
isomorphic if and only if they have the same cardinality.

P������ 3.68. Show that Z contains (many) proper subgroups that are isomorphic Z.

D��������� 3.69. The quaternion group is the group Q8 :=
n

{±1,±i ,± j,±k}, ·,�1 , 1
o

where
• (�1)(�1) = 1,
• g(�1) = (�1)g = �g for all g 2 Q8,
• i2 = j2 = k2 = �1, and
• i j = k.

Note that these axioms imply that 1 is the identity and that g�1 = �g for all g 2 Q8 � {±1}.

P������ 3.70. Show that Q8 is a nonabelian group of order 8 that is not isomorphic to D4.
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N������� 3.71. There are two groups attached to every �eld F: the elements of F under
addition, denoted F+, and the nonzero elements of F under multiplication, denoted F⇥ .

P������ 3.72. Show that R+ � R⇥ . However, if H is the subgroup of R⇥ consisting of the
positive real numbers, show that R+ � H.

P������ 3.73. Let F be any �eld. Find two subgroups of GL2(F) isomorphic to F+ and F⇥ .
[Hint: you can restrict your attention to upper triangular matrices.]

D��������� 3.74. Let G and H be groups, and let ' : G ! H be a homomorphism. De�ne
the kernel of ' to be ker' := {g 2 G |'(g) = 1}. For any subset A ✓ G, de�ne the image of

A to be '(A) := {h 2 H |h = '(a) for some a 2 A}.

T������ 3.75. If ' : G ! H is a homomorphism of groups, then the kernel of ' is a normal

subgroup of G, and the image of any subgroup of G is a subgroup of H.

R����� 3.76. The previous theorem states that kernels of homomorphisms are normal
subgroups, but the converse is also true: every normal subgroup is the kernel of some
homomorphism. Indeed, if N E G, then the map ' : G ! G/N : g 7! gN is a (surjective)
homomorphism with kernel equal to N .

T������ 3.77. A homomorphism of groups is injective if and only if the kernel is trivial.

T������ 3.78 (First Isomorphism Theorem). If ' : G ! H is a surjective homomorphism of
groups, then G/ker' � H. [Hint: Use ' to de�ne a related function from G/ker' to H.]

R����� 3.79. If ' : G ! H is a homomorphism of groups, then ' : G ! '(G) is a surjec-
tive homomorphism, so G/ker' � '(G). In words, “G modulo the kernel is isomorphic
to the image.” Setting K := ker', the picture is roughly as follows.

...

'
K

g1K

g2K

...
G

1

'(g1)

'(g2)

...

H

'(G)

P������ 3.80. Let F be any �eld. Show that SLn(F) is normal in GLn(F) by showing that
SLn(F) is the kernel of a homomorphism from GLn(F) to another group. Use this homo-
morphism to describe the quotient group GLn(F)/ SLn(F).
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