Math 1300 Fall 2005 Review Sheet for Midterm Exam 1

- 1. Sketch the graph of $f(x) = -(x+3)^2 + 4$. Label intersections with the axes.
- 2. Let $f(x) = \frac{1}{x}$ and $g(x) = (x+3)^2$. Find, but do not simplify, $f \cdot g(x)$, (f-g)(x), and $f \circ g(5)$.
- 3. Let f(x) = |x| + 3 and g(x) = 2x.
- (a) Find the compositions f(g(x)) and g(f(x)).
- (b) Graph both f(q(x)) and q(f(x)) by translating, reflecting, compressing, and stretching the graph of |x|.
- 4. Let $f(x) = x^2 + 5$, g(x) = x 2, $h(x) = \sqrt{\frac{1}{3}x} 3$.
- (a) Find $f \circ g$.
- (b) Graph $f \circ g$.
- (c) Find $f \circ h$.
- (d) Graph $f \circ h$.
- 5. Find the formula for $f^{-1}(x)$, and state the domain of the function f^{-1} :

$$f(x) = -\sqrt{5 + 4x}$$

6. Calculate $f^{-1}(x)$ for the following functions:

(a)
$$f(x) = x^3 + 1$$

(b)
$$f(x) = \frac{1}{\sqrt{x+1}}$$

(a)
$$f(x) = x^3 + 1$$
 (b) $f(x) = \frac{1}{\sqrt{x+1}}$ (c) $f(x) = \begin{cases} x-2 & x < 0 \\ x^2 & x \ge 0 \end{cases}$

7. An angry CSU fan throws an empty bottle onto the field during the CU - CSU football game. The bottle has an initial speed of v = 8m/s and is thrown at an angle θ above the horizontal. Neglecting air resistance, the bottle will land a distance d down the field, where d is given by

$$d = \frac{v^2}{a}\sin 2\theta,$$

where v is the initial speed and g is acceleration due to gravity (use $g = 10 \frac{m}{s^2}$). If the bottle lands 3.2m down the field, at what angle above the horizontal did the CSU fan throw the bottle? (There are two possible angles.)

- 8. Solve each equation for x:
- (a) $2^{x-5} = 3$
- (b) $\ln x + \ln(x-1) = 1$ (HINT: First find the domain of definition of the problem.)
- (c) $x^{\ln x} = (e^2)(x)$
- (d) $e^x(2x+1) = -x^2e^x$
- (e) $x^2e^x + 10e^x = 7xe^x$
- 9. Evaluate the limits (if they exist):

- 9. Evaluate the limits (i
 (a) $\lim_{a \to 4} \frac{a^2 3a 4}{4 a}$ (b) $\lim_{x \to 2} \frac{x^2 2x 1}{x^2 5x + 6}$ (c) $\lim_{x \to -1} \frac{|x 1|}{x^2 1}$ (d) $\lim_{x \to 1} \frac{x^2 + 2x 3}{x + 1}$ (e) $\lim_{x \to \infty} \frac{x^{1/3}}{x^{2/3}}$ (f) $\lim_{x \to +\infty} \sqrt{\frac{15x}{3x + 1} + 9}$