MATH 1300: CALCULUS 1

May 9, 2006

Final Exam

YOUR NAME:		
001 E. Mankin	(8AM)	○ 008 M. WALTER (2PM)
002 N. Flores	(9AM)	009 T. Schumacher(2PM)
○ 003 R. CHESTNUT	(9AM)	011 J. Wiscons(10am)
004 E. Frugoni	(10am)	○ 012 V. Wong(12PM)
○ 005 J. Fuhrmann	(11AM)	○ 013 S. Tramer(1pm)
006 J. SANDERS	(11AM)	○ 014 C. MOODY(1PM)
007 J. Nibert	(12PM)	\bigcirc 015 J. Johanson(3PM)

Show all your work.

Answers out of the blue and without any supporting work will receive no credit even if they are right!

(Does not apply to multiple choice and true/false questions)

Write clearly. Box your final answers. No calculators allowed. No cheat sheets allowed.

DO NOT WRITE ON THIS BOX!

problem	points	score
1	24 pts	
2	8 pts	
3	8 pts	
4	9 pts	
5	8 pts	
6	8 pts	
7	6 pts	
8	7 pts	
9-26	72 pts	
TOTAL	150 pts	

1: (24 points) Evaluate the following definite and indefinite integrals:

(a)
$$\int_0^1 (2x-1)^{42} dx$$

$$\mathbf{(b)} \ \int_{\ln 2}^{\ln 3} e^{2x} \, dx$$

$$\mathbf{(c)} \ \int_0^{\frac{\pi}{2}} \sin x \cos x \, dx$$

(d)
$$\int \frac{\cos(\sqrt{x})}{\sqrt{x}} \, dx$$

(e)
$$\int \frac{e^x}{1 + e^{2x}} \, dx$$

$$\mathbf{(f)} \int \frac{\cos x - \sin x}{\cos x + \sin x} \, dx$$

2: (8 points) Find the area under the curve $y = e^x + x$ over the interval [0, 1].

3: (8 points) Determine
$$f'(x)$$
 if $f(x) = \int_2^x \sin(t^2) dt$.

4: (9 points) Given that $\int_0^{2\pi} f(x) dx = 3$ and $\int_0^{2\pi} g(x) dx = -\frac{1}{2}$, determine the following quantities:

(a)
$$\int_{2\pi}^{0} f(x) \ dx$$

(b)
$$\int_0^{2\pi} (2g(x) - 5f(x)) dx$$

(c)
$$\int_0^{2\pi} (3 - g(x)) dx$$

5: (8 points) Find the area of the region enclosed by the curves $y = x^2 - x - 4$ and y = x - 1.

6:	(8 points) Set up, but	DO	NOT	EVAL	UATE,	integrals	that	express	the	volume	of the	e solids	that	result
wl	en the region enclosed	l by	the cu	irves										

$$y = e^x$$
, $x = 0$, $x = \ln(2)$, $y = 0$

is revolved about:

(a) the x-axis

(b) the y-axis

7: (6 points) Give an example of a function f(x) that is continuous everywhere, but is not differentiable everywhere. At what value(s) of x is f(x) not differentiable?

8: (7 points) If $f(x) = x^4 - 3x^3 + 1$, prove that there is a point on the interval [0, 2] where f'(c) = -4.

Proof (fill in the blanks and note that there are 7 blanks):

f(x) is continuous on [0,2] because f is a ________ .

$$f'(x) = 4x^3 - 9x^2$$
, so f is ______ on (0,2).

So, by the _____ theorem, there is a point c in (0,2) such that

$$f'(c) = \frac{-}{-} = \frac{-7-1}{2} = -4$$

The remainder of this exam consists of **True/False** and **Multiple Choice** questions (worth 4 points each). Please circle your answer for each question on **THIS** page. (The actual questions are on the pages that follow.) It is not necessary to show your work, and no partial credit will be given.

9:	(TRU	E)	(FALSE)					
10:	(TRUE)		(FALSE)					
11:	(TRUE)		(FALSE)					
12:	(TRUE)		(FALSE)					
13:	(A)	(B)	(C)	(D)	(E)			
14:	(A)	(B)	(C)	(D)	(E)			
15:	(A)	(B)	(C)	(D)	(E)			
16:	(A)	(B)	(C)	(D)	(E)			
17:	(A)	(B)	(C)	(D)	(E)			
18:	(A)	(B)	(C)	(D)	(E)			
19:	(A)	(B)	(C)	(D)	(E)			
20:	(A)	(B)	(C)	(D)	(E)			
21:	(A)	(B)	(C)	(D)	(E)			
22:	(A)	(B)	(C)	(D)	(E)			
23:	(A)	(B)	(C)	(D)	(E)			
24:	(A)	(B)	(C)	(D)	(E)			
25:	(A)	(B)	(C)	(D)	(E)			
26:	(A)	(B)	(C)	(D)	(E)			

- 9: TRUE or FALSE: Two different functions can have the same derivative.
- 10: TRUE or FALSE: Two different functions can have the same antiderivative.
- 11: TRUE or FALSE: An x-coordinate where f''(x) = 0 is a point of inflection.
- 12: TRUE or FALSE: $\int xe^x dx = xe^x e^x + C.$
- 13: $\lim_{x\to\infty} \frac{4x^{10}+3x}{5x^{10}+e^x} =$
- (A) ∞ (B) $\frac{4}{5}$
- (C) 0 (D) $-\infty$
- (E) DNE

- **14:** Find the x-coordinates of the absolute maximum and absolute minimum of $f(x) = \frac{1}{3}x^3 \frac{1}{2}x^2 6x$ on [-1, 4].
- (A) Max: x = -2 Min: x = 3
- (C) Max: x = 3 Min: x = -1
- (B) Max: x = 4 Min: x = 3 (D) Max: x = 4 Min: x = -1
- **(E)** None of the above

- **15:** Find F'(1) if $F(x) = e^2$.
- **(A)** e^2 **(B)** 1
- (C) 2e (D) $\frac{1}{e}$
- **(E)** 0

- **16:** If a < 0 and b > 0, then $\lim_{x \to \infty} \frac{ax^4 + bx + c}{bx^3 + c} =$
- **(A)** 0
- (B) $-\infty$ (C) ∞
- (D) $\frac{a}{b}$
- **(E)** 1
- 17: Which of the following is true about $f(x) = \frac{x^2 + 4x + 4}{x^2 x 6}$?
- (A) f has a vertical asymptote at x = -2
- **(B)** f has a horizontal asymptote of y = 1
- (C) f has no vertical asymptote
- (D) f has no horizontal asymptote
- **(E)** Both (A) and (B)

- **18:** Find $\frac{dy}{dx}$ by implicit differentiation if $y = x^2y^2 3xy 10$

- (A) $2x^2y 3x$ (B) $\frac{10}{4xy 3x 1}$ (C) $\frac{-2xy^2 + 3y + 1}{2x^2y + 3x}$ (D) $2xy^2 3y$ (E) $\frac{-2xy^2 + 3y}{2x^2y 3x 1}$

- **19:** If g(1) = 2, f(1) = -1, g'(1) = 0, and f'(1) = 7, then what is (f/g)'(1)?
- **(A)** 0
- (B) $\frac{7}{2}$ (C) $-\frac{1}{2}$ (D) -7
- **(E)** DNE

- **20:** Find an equation for the tangent line to the curve $y = x^7 5$ at the point (1, -4).
- **(A)** y = 7x

- **(B)** y = 7x + 5 **(C)** y = 7x 3 **(D)** y = 7x 11 **(E)** y = 7x 6

- **21:** Find $\frac{d}{dx} \left[\cos^2(\pi x) \right]$.
- (A) $\sin^2(\pi x)$

- (B) $-2\pi\cos(\pi x)\sin(\pi x)$ (C) $2\pi\cos(\pi x)\sin(\pi x)$

(D) $2\cos(\pi x)$

(E) None of the above

- **22:** Find $\lim_{x\to 3} \left(\frac{1}{x-3}\right)$.
- (A) ∞ (B) $-\infty$ (C) $-\frac{1}{3}$ (D) 0
- **(E)** DNE

- **23:** Evaluate $\int (\csc^2 \theta \sec^2 \theta) d\theta.$
- (A) $-\cot\theta \tan\theta + C$ (B) $\cot\theta \tan\theta + C$
- (C) $\cot \theta + \tan \theta + C$

- (D) $-\cot\theta + \tan\theta + C$ (E) None of the above

24: Which of the following functions is not continuous at x = 1?

(A)
$$f(x) = \sin\left(\frac{1}{x} - x\right)$$

(B)
$$f(x) = \sqrt{\frac{1}{2} - x}$$

(C)
$$f(x) = |x - 1|$$

(D)
$$f(x) = \begin{cases} \sin(\pi x), & \text{if } x \ge 1\\ \cos(\pi x) + x, & \text{if } x < 1 \end{cases}$$

(E) None of the above

25:
$$\lim_{h\to 0} \left(\frac{\ln(2+h) - \ln(2)}{h} \right) =$$

- **(A)** 0
- (B) $\frac{1}{2}$
- **(C)** 1
- (D) ∞
- **(E)** DNE

26: $1^3 - 1^2 + 1 + \frac{1}{2} > 0$ and $(-1)^3 - (-1)^2 + (-1) + \frac{1}{2} < 0$, so the polynomial $x^3 - x^2 + x + \frac{1}{2}$ has a root between x = 1 and x = -1 by

(A) Rolle's theorem

- (B) L'Hôpital's Rule
- (C) The Mean Value Theorem
- (D) The Intermediate Value Theorem
- (E) The Extreme Value Theorem