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Kansa's METHOD NuMERICAL RESULTS

A meshless method is designed for modelling double-diffusive thermohaline Consider the differential equation Using the parameter values x =3, 3 =2, L =1 and R = 1, we obtained results
groundwater flow in an aquifer. The algorithm uses the Kansa collocation method Fu = f(x), ¥x € Q comparable to Rosenberg and Spera [3]. The flow consists of a simultaneous
with Gaussian radial basis functions (RBFs). Numerical results are presented for Gu = g(x), Vx € 9Q (2)]  rising hot fluid with a high solute concentration and a sinking colder fluid with
the steady-state case with symmetric domain. , ; , , lower solute concentration.

for a domain () C R’. Kansa’s method [2] relies upon using the N centers for the

basis functions, {x;}}! ;, as collocation pomts Some of the centers, {xl} ' are interior 5 2
points (in Q) and the remainder, {x;}} ~n,+1- are boundary points. The approximate W S T 15| \\
Flows with two sources of buoyancy are of great interest with respect to solution can be expressed as a linear combination of the radial basis functions: v A= 1 \\\\ [
contaminant transport in groundwater. However, the second source of buoyancy N | > \\\\/ f j f
dramatically complicates the dynamics of heat and mass transter. Meshless Z i (Ix — xi) (3) N O ) > < (
methods have shown to be an effective approach to constructing numerical sl 08y //\\ \
simulations of the fluid flow. Using RBFs is appealing because of their high Substituting this expansion into the equatlons (2) and matching known values at ol
algorithmic simplicity, and independence of dimension and coordinate system. all of the collocation points, we obtain the system of equations N V111117 e ”\\\\\
To our best knowledge, modelling double-diffusive ground water flow using N e s oo N 255 5 a5 o s o o5
Kansa’s method has not been attempted. Z wi(FP)(x — x) =f(x)), i=1,2,..., N (a’; (b);
=1 Figure: (a): Plot of the stream function, 1\, with fluid flowing from high potential (red) to low
(GOVERNING SYSTEM OF EQUATIONS N (blue). (b): Plot of the specific discharge, q, with high (red) and low (blue) velocity flow indicated.
Zu](GCI))“xi X]D =g(x;)), i=Nr+1,...,N
A two-dimensional equivalent porous medium that is homogeneous and =1 The modest number of data points required allowed this simulation to be
isotropic is considered. Assuming an incompressible fluid with no sources or If F or G is nonlinear, then a nonlinear solver is required to determine the completed on a laptop computer within a few minutes.
sinks, convection in porous media is described by the coupled, nonlinear system coefficients. If F and G are linear, then the resulting coefficient matrix is positive
of quations definie
-q=20
v 3 = —Vp+ RpVf Kansa’s method of collocation using RBFs is a versatile and robust tool for
0=1—oT + BC (1) | | | | | constructing approximate solutions to a wide variety of PDEs. In addition to the
VT.-q=AT The computational domain consists of a unit box with a hot bottom, cold top and simplicity of formulating the corresponding linear system, collocation with RBFs
LVC.-q = AC adiabatic sides. All walls are impermeable to flow and the fluid is initially cold is mesh-free and is well suited for problems with moving interfaces (e.g. dynamic
where p is the pressure field, R a parameter based upon the Rayleigh number, f is and motlf)nless - By spatial s ymmetry, the Computatmn.a! domain is simply a unit crack gr9wth, plastic deformation). Forod(.)uble—diffusive ﬂOOW problems, our |
a body potential, p is the density, T is the temperature, C is the concentration, and iquare with a corne: at the orlg.m. The boundary conditions are based upon the quel yielded results comparable to existing models but with fewer collocation
L is the porosity. The coetficients of thermal and chemical expansivity are « and salted from below™ configuration ([3]). points.

3, respectively. By incompressibility, there exists a stream function, \(x, z, ), such C=0 T=0

that q = (U, 0, — ). Aside from specific configurations, the recursive and b 0 FUTURE WORK
: : : : : q=0 q=
Eﬁﬂ;ﬁ?ggll;;}?%fi?afégise(allleag:)e n;ﬁ;ei:j: ?2;;?23;322&11;?;?}?? aw_, b=0 boofdo Our model utilized a set of evenly-sp.aced center/ Colloca.tion innts within. the
behavior of the fluid flow. n .domal.n. Of the vast number of questions,there are two in particular we wish to
b =0 Investigate:
RapiaLl Basis FUNCTIONS C—1 T-1 » Can sufficient accuracy be achieved with an arbitrary set of center/collocation
Figure: “Salted from below” boundary conditions: the top and bottom walls are kept at a constant points?
RBFs are members of the Beppo-Levi space of distributions on IR* with square composition and no salt is allowed to leave the box through the side walls. » Assuming a smooth extension of physical properties, can centers/collocation
integrable second derivatives, BL'? (IR%). The space BL?/(IR%) is equipped with the The temperature and concentration fields are approximated as in (3) with five points be located outside of the domain?
rotation invariant semi-norm defined as center/collocation points shown in Figure 2.
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for any s € BL'?(IR?) where A is the Laplacian operator. This semi-norm is a
measure of the energy or “smoothness” of functions: functions with a small
semi-norm are smoother than those with a large semi-norm. Duchon [1] showed
that the smoothest interpolant, has the simple form

) + Z cip (Ix — xil)

where p is a polynomial of low degree and the basic function ¢ is a real valued

s ATl estimates.
function on [0, ?o), usually unbounded and of non-compact support. In this oS Comput. Math. Appl., 19(8/9):127-145, 1990.
context, the points, x;, are referred to as the centers of the RBF. For our model, we i The Tocation of fhe £ llocation/cent . | b o] t
used the Gaussian RBF 1gure: . € 10Ca 101’1. O . & .1V€ collocatnon/center points:. one along eachn edge and a singile center . N D Rosenberg and F ] Spera
located in the domain interior.
$(r) = exp(—cr?) I'hermohaline convection in a porous medium heated from below.
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