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Abstract
A meshless method is designed for modelling double-diffusive thermohaline
groundwater flow in an aquifer. The algorithm uses the Kansa collocation method
with Gaussian radial basis functions (RBFs). Numerical results are presented for
the steady-state case with symmetric domain.

Motivation
Flows with two sources of buoyancy are of great interest with respect to
contaminant transport in groundwater. However, the second source of buoyancy
dramatically complicates the dynamics of heat and mass transfer. Meshless
methods have shown to be an effective approach to constructing numerical
simulations of the fluid flow. Using RBFs is appealing because of their high
algorithmic simplicity, and independence of dimension and coordinate system.
To our best knowledge, modelling double-diffusive ground water flow using
Kansa’s method has not been attempted.

Governing System of Equations

A two-dimensional equivalent porous medium that is homogeneous and
isotropic is considered. Assuming an incompressible fluid with no sources or
sinks, convection in porous media is described by the coupled, nonlinear system
of equations

∇ · q = 0
q = −∇p + Rρ∇f
ρ = 1 − αT + βC

∇T · q = 4T
L∇C · q = 4C

(1)

where p is the pressure field, R a parameter based upon the Rayleigh number, f is
a body potential, ρ is the density, T is the temperature, C is the concentration, and
L is the porosity. The coefficients of thermal and chemical expansivity are α and
β, respectively. By incompressibility, there exists a stream function, ψ(x, z, t), such
that q = (ψ,z, 0,−ψ,x)

T. Aside from specific configurations, the recursive and
nonlinear behavior of the equations precludes an analytic solution. Hence,
numerical approximations are the only means towards understanding the
behavior of the fluid flow.

Radial Basis Functions
RBFs are members of the Beppo-Levi space of distributions on R3 with square
integrable second derivatives, BL(2)(R3). The space BL(2)(R3) is equipped with the
rotation invariant semi-norm defined as

‖s‖ =
∫
R3
(4s)2dx

for any s ∈ BL(2)(R3) where4 is the Laplacian operator. This semi-norm is a
measure of the energy or “smoothness” of functions: functions with a small
semi-norm are smoother than those with a large semi-norm. Duchon [1] showed
that the smoothest interpolant, has the simple form

s(x) = p(x) +
N∑

i=1

ciφ(|x − xi|)

where p is a polynomial of low degree and the basic function φ is a real valued
function on [0,∞), usually unbounded and of non-compact support. In this
context, the points, xi, are referred to as the centers of the RBF. For our model, we
used the Gaussian RBF

φ(r) = exp(−cr2)

Kansa’sMethod
Consider the differential equation

Fu = f (x), ∀x ∈ Ω
Gu = g(x), ∀x ∈ ∂Ω (2)

for a domainΩ ⊆ R3. Kansa’s method [2] relies upon using the N centers for the
basis functions, {xi}

N
i=1, as collocation points. Some of the centers, {xi}

NI
i=1 are interior

points (inΩ) and the remainder, {xi}
N
i=NI+1, are boundary points. The approximate

solution can be expressed as a linear combination of the radial basis functions:

u(x) =
N∑

j=1

ujφ(|x − xj|) (3)

Substituting this expansion into the equations (2) and matching known values at
all of the collocation points, we obtain the system of equations

N∑
j=1

uj(Fφ)(|xi − xj|) = f (xi), i = 1, 2, . . . , NI

N∑
j=1

uj(Gφ)(|xi − xj|) = g(xi), i = NI + 1, . . . , N

If F or G is nonlinear, then a nonlinear solver is required to determine the
coefficients. If F and G are linear, then the resulting coefficient matrix is positive
definite.

Problem Formulation
The computational domain consists of a unit box with a hot bottom, cold top and
adiabatic sides. All walls are impermeable to flow and the fluid is initially cold
and motionless. By spatial symmetry, the computational domain is simply a unit
square with a corner at the origin. The boundary conditions are based upon the
“salted from below” configuration ([3]).
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Figure: “Salted from below” boundary conditions: the top and bottom walls are kept at a constant
composition and no salt is allowed to leave the box through the side walls.

The temperature and concentration fields are approximated as in (3) with five
center/collocation points shown in Figure 2.
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Figure: The location of the five collocation/center points: one along each edge and a single center
located in the domain interior.

Numerical Results
Using the parameter values α = 3, β = 2, L = 1 and R = 1, we obtained results
comparable to Rosenberg and Spera [3]. The flow consists of a simultaneous
rising hot fluid with a high solute concentration and a sinking colder fluid with
lower solute concentration.
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Figure: (a): Plot of the stream function, ψ, with fluid flowing from high potential (red) to low
(blue). (b): Plot of the specific discharge, q, with high (red) and low (blue) velocity flow indicated.

The modest number of data points required allowed this simulation to be
completed on a laptop computer within a few minutes.

Conclusion
Kansa’s method of collocation using RBFs is a versatile and robust tool for
constructing approximate solutions to a wide variety of PDEs. In addition to the
simplicity of formulating the corresponding linear system, collocation with RBFs
is mesh-free and is well suited for problems with moving interfaces (e.g. dynamic
crack growth, plastic deformation). For double-diffusive flow problems, our
model yielded results comparable to existing models but with fewer collocation
points.

FutureWork
Our model utilized a set of evenly-spaced center/collocation points within the
domain. Of the vast number of questions,there are two in particular we wish to
investigate:
ICan sufficient accuracy be achieved with an arbitrary set of center/collocation

points?
IAssuming a smooth extension of physical properties, can centers/collocation

points be located outside of the domain?

Bibliography

J. Duchon.
Constructive Theory of Functions of Several Variables, chapter Splines Minimizing
Rotation-Invariant Semi-Norms in Sobolev Spaces, pages 85–100.
Springer-Verlag, Berlin, 1977.

E. J. Kansa.
Multiquadratics - a scattered data approximation scheme with applications to
computational fluid dynamics i: Surface approximations and partial derivative
estimates.
Comput. Math. Appl., 19(8/9):127–145, 1990.

N. D. Rosenberg and F. J. Spera.
Thermohaline convection in a porous medium heated from below.
Int. J. Heat Mass Transfer, 35(5):1261–1273, 1992.

http://http://webpages.csus.edu/ zeigler zeigler at csus dot edu


