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Continuum models for the 
natural convection of a fluid 
through a porous media with two 
buoyancy sources are 
mathematically described as a 
system of coupled nonlinear 
differential equations. Because 
of the intractability of the 
governing equations, 
descriptions of the behavior of 
the system have been obtained 
exclusively through numerical 
investigations. A ubiquitous 
question when constructing 
numerical models is the 
accuracy of the model. 
Specifically, is the exhibited 
behavior actual physical 
phenomena or a numerical 
artifact? To resolve this question, 
a rigorous analysis of the system 
is required. A goal of our project 
is to establish the integrability of  
the system of differential 
equations describing 
groundwater flow where the 
behavior of the system is 
described using the generalized 
Darcy Law. This will be 
accomplished through the 
construction of a manifold on 
whose level surfaces all flow 
paths are confined. The 
argument presented relies upon 
techniques used to analyze 
dynamical systems and are 
independent of the boundary and 
initial conditions.
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Using a variation of Hubbert’s Potential

the specific discharge may be expressed as

The Lamb surface is a two-dimensional manifold containing 
the specific discharge and the corresponding vorticity.

where

Setting

the coefficient is found by solving the differential equation

Poincare-Bendixson states that if a trajectory enters and does 
not leave a closed and bounded region of phase space which 
contains no equilibria, then the trajectory must approach a 
periodic orbit as             .

Suppose the fluid is slightly inhomogeneous as described by a 
perturbation expansion of the Reynold’s number

Then we can construct approximate Lamb surfaces such that

The series is convergent for all r and absolutely convergent 
when

Fluid flow through an isotropic, inhomogeneous porous 
medium is described in nondimensional form by

Darcy’s Law describes the specific discharge function

where R is a parameter related to the Rayleigh number, and f
is a sufficiently smooth body potential. Fluid density is linearly 
dependent on temperature and solute concentration

Fluid incompressibility yields 

Temperature and concentration are defined as

• Double-diffusive flows are confined to manifolds described by 
the Lamb surface.
• Yet more evidence that mathematics is superior and 
mathematicians are the biggest and baddest.
• Is zero helicity a necessary condition for integrable flows?
• Better numerical models are needed (especially if the 
Rayleigh number is large!)

Buoyancy-driven fluid flow in porous media can occur in the 
presence of large temperature or concentration gradients. In 
such cases, the flow is strongly coupled to heat and solute 
transport and the system is described by a coupled nonlinear 
system of partial differential equations. Because they are 
nonlinear and recursive, the behavior of the flow and transport 
equations are typically investigated numerically. Some 
numerical simulations of free convection in porous media have 
produced flow and transport fields that display erratic behavior 
that has been interpreted as chaos.

When numerical models of nonlinear systems display chaotic 
behavior it raises a vexing problem as to whether the chaotic 
behavior is introduced by the numerical calculations or is 
inherent in the physical system. In our project, we present an 
analytic argument showing that flow in porous media cannot 
be chaotic even in the presence of arbitrarily large buoyancy 
forces. Our proof consists of showing the system is completely 
integrable. Through the Poincare-Bendixson theorem, such 
systems are known to be non-chaotic.
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Figure 1. Turbulent (chaotic)  
flow is characterized by 
recirculation, eddies, and 
apparent randomness. Flow in 
which turbulence is not 
exhibited is called laminar. 
Note, however, that not all 
chaotic flow is turbulent. 

Figure 2. Fingering pattern in 
double-diffusive flow just prior 
to onset of convection. Heat 
causes the fluid to rise. Cooler, 
less dense fluid sinks due to 
gravity. Simultaneously, more 
saline fluid has greater density 
and sinks. Density and 
temperature differences induce 
convection.
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