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Introduction Lamb Surface Integrability & Stability

Continuum models for the
natural convection of a fluid

Buoyancy-driven fluid flow in porous media can occur in the
presence of large temperature or concentration gradients. In

Using a variation of Hubbert’s Potential Poincare-Bendixson states that if a trajectory enters and does

not leave a closed and bounded region of phase space which

through a porous media with two such cases, the flow is strongly coupled to heat and solute K = Rp H=f+ /p ap contains no equilibria, then the trajectory must approach a
buoyancy sources are transport and the system is described by a coupled nonlinear po £2P periodic orbitas ¢ — o .

mathematically described as a system of partial differential equations. Because they are the specific discharge may be expressed as

system of coupled nonlinear nonlinear and recursive, the behavior of the flow and transport 0= —KVH

differential equations. Because
of the intractability of the
governing eguations,
descriptions of the behavior of

equations are typically investigated numerically. Some
numerical simulations of free convection in porous media have
produced flow and transport fields that display erratic behavior
that has been interpreted as chaos.

Suppose the fluid is slightly inhomogeneous as described by a
perturbation expansion of the Reynold’s number

1 oo
R = Zrz, 0<r<l1

The Lamb surface is a two-dimensional manifold containing
the specific discharge and the corresponding vorticity.

i When numerical models of nonlinear systems display chaotic i Then we can construct approximate Lamb surfaces such that

the sy§tem have been obtgined H(x) = IH x(_Kq—Q) (. dx L=r =

exclusively through numerical 0K Jx,

Investigations. A ubiquitous behavior it raises a vexing problem as to whether the chaotic where 00

questi(_)n when con_structing pehavior'is introducgd by the numerical cglculations oris (= (VK x VH) x q H = Z r"H,

numerical models is the Inherent in the physical system. In our project, we present an i=0

accuracy of the model. analytic argument showing that flow in porous media cannot Setting The series is convergent for all r and absolutely convergent
Specifically, is the exhibited be chaotic even in the presence of arbitrarily large buoyancy A= —Kq 2 oH when

behavior actual physical forces. Our proof consists of showing the system is completely 0K 2 < R<?9

phenomena or a numerical iIntegrable. Through the Poincare-Bendixson theorem, such the coefficient is found by solving the differential equation 3

artifact? To resolve this guestion, systems are known to be non-chaotic.

a rigorous analysis of the system dA [ 0 (dH) L0 (dK)] P

IS required. A goal of our project dt OH \ dt OK \ dt

IS to establish the integrability of

the system of differential | : T ; e o e e e 5 e e 5 5 o 5 e 5 o 5 5 e e 5 e i ;
equations describing . . .

groundwater flow where the Flow In Porous Media Conclusions & Future Work
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behavior of the system Is
described using the generalized
Darcy Law. This will be
accomplished through the
construction of a manifold on
whose level surfaces all flow
paths are confined. The
argument presented relies upon
techniques used to analyze
dynamical systems and are
independent of the boundary and

Fluid flow through an isotropic, inhomogeneous porous
medium is described in nondimensional form by

dx

E — q(ta X(t))

Darcy’s Law describes the specific discharge function
q=—-Vp+ RpVf

where R is a parameter related to the Rayleigh number, and f
IS a sufficiently smooth body potential. Fluid density is linearly
dependent on temperature and solute concentration

* Double-diffusive flows are confined to manifolds described by
the Lamb surface.

* Yet more evidence that mathematics is superior and
mathematicians are the biggest and baddest.

Figure 1. Turbulent (chaotic) i
which turbulence is not '« |s zero helicity a necessary condition for integrable flows?

flow is characterized by
recirculation, eddies, and
apparent randomness. Flow in

exhibited is called laminar. e Better numerical models are needed (especially if the

Note, however, that not all e o
chaotic flow is turbulent. yl€lg ge:

)

T PO e 54 AR A
2t gty % W BF o A
», Py RN Ll L S
o g A Do ., =T )
A 222 e R o v
” e i L Apre g ®

Initial conditions. T(=25

p=1—al + pC Figure 2. Fingering pattern in . IN Refe rences
""""""""""""""""""" . e double-diffusive flow just prior C
COntaCt Fluid incompressibility yields to onset of convection. Heat 1. Evans, D. G., Nunn, J. A., and Hanor, J. S., Mechanisms :
div (pq) =0 causes the fluid to rise. Cooler, . : driving groundwater flow near salt domes, Geophys. Res. .
R L L L LD , less dense fluid sinks due to 5 i Lett., 18, 927-930, 1991. !
i David Zeigler i Temperature and concentration are defined as gravity. Simultaneously, more - i _ _ !
' D ¢ ¢ of Math s & ! 9T saline fluid has greater density 2. Sposito, G., Steady groundwater flow as a dynamical !
, Uepartment ot Mathematics : —+VT.-q = AT and sinks. Densitv and : system, Water Res. Res., 30(8), 2395-2401, 1994 I
. Staistics, CSUS ! ot y : y !
I ) ’ ! temperature differences induce I — - N . . !
' zeigler@csus.edu . oC 1 convection RN 3. Tabor, M., Chaos and Integrability in Nonlinear Dynamics, i
| 916-278-7119 i % Tgvla = &80 | . Wiley, 1989. :

Poster Design & Printing by Genigraphics® -
800.790.4001




	Slide Number 1

